Fatima Z. Lemmadi, Abdelouahed Chala, Okba Belahssen, Said Benramache


The aging effect before and after quenching at a temperature of 400 °C of Al 6000 alloy was studied. The ageing temperature used in this work was 300 °C pending time 24 and 48 h. The structural properties were investigated using X-ray diffraction; the microstructural evolution was investigated using optical, scanning and transmission electron microscopies and microhardness measurement for the mechanical properties. After various states of ageing, the Al-Mg-Si alloy shows significant changes in the microstructure and mechanical behaviour. After ageing, the microstructure of the matrix consisted of a two solid solution of α–Al and β– Mg2Si phases precipitation. After two-step ageing at 300 °C, corresponding to the minimum value of microhardness, the alloy reveals small β continuous precipitates. After ageing at 300 °C of original sample, the volume fraction of this precipitates becomes higher. On the other hand, the optimal ageing time was 48 h in all steps.


Al 6000 alloy; aging; phases precipitates; mechanical behaviour.

Full Text:



J. Dutkiewicz, L. Litynska: Materials Science and Engineering A, Vol. 324, 2002, p. 239‒243, Doi:10.1016/S0921-5093 (01) 01318–1

G.M. Nowotnik, J. Sieniawski, M. Wierzbiñska: Archives of Materials Science and Engineering, Vol. 28, 2007, p. 69‒76

W. Guan, H.S. Jiao: Transactions of Nonferrous Metals Society of China, Vol. 21, 2011, p. 1193‒1198, DOI: 10.1016/S1003-6326(11)60842-X

H. Liu, G. Zhao, C.M. Liu, L. Zuo: Transactions of Nonferrous Metals Society of China, Vol. 17, 2007, p. 122‒127

X. Fang, M. Song, K. Li, Y. Du: Journal of Mining and Metallurgy, Section B: Metallurgy, Vol. 46, 2010, p. 171‒180, Doi:10.2298/JMMB1002171F

H.S. Hasting et al.: Journal of Applied Physics, Vol. 106, 2009, p. 123527‒4, DOI: 10.1063/1.3269714.

S. Nebti, D. Hamana, G. Cizeron: Acta Metallurgica et Materialia, Vol. 43, 1995, p. 3583‒3588, DOI: 10.1016/0956-7151(95)00023-O

D. Hamana, M. Bouchear, A. Derafa: Materials Chemistry and Physics, Vol. 57, 1998, p. 99‒110, Doi:10.1016/S0254-0584(98)00191-6

K. Li, M. Song, Y. Du, X. Fang: Archives of Metallurgy and

Materials, Vol. 57, 2012, p. 457‒467, DOI: 10.2478/v10172-012-0047-y

D.J. Chakrabarti, D.E. Laughlin: Progress in Materials Science, Vol. 49, 2004, p. 389‒410, Doi:10.1016/S0079-6425(03)00031-8

I.O. Oladele, J.A. Omotoyinbo, Journal of Minerals and Materials Characterization and Engineering, Vol. 10, 2011, p.1285-1292

I. Özbek: Materials Characterization, Vol. 58, 2007, p. 312‒317, Doi:10.1016/j.matchar.2006.07.002

T.I. Gutiérrez: Materials Sciences and Engineering A, Vol. 394, 2005, p. 399‒410, Doi:10.1016/j.msea.2004.11.025

H.J Roven, M. Liu, J.C. Werenskiold: Materials Sciences and Engineering A, Vol. 483–484, 2008, p. 54‒58, Doi:10.1016/j.msea.2006.09.142

M. Cai, D.P. Field, G.W. Lorimer: Materials Sciences and Engineering A, Vol. 373, 2004, p. 65‒71, Doi:10.1016/j.msea.2003.12.035

J.K. Kim, H.G. Jeong, S.I. Hong, Y.S. Kim, W.J. Kim: Scripta Materiala, Vol. 45, 2001, p. 901‒907, Doi:10.1016/ S1359-6462 (01) 01109–5



  • There are currently no refbacks.

SJR 2014: 0.502 - Q2 Metals and Alloys, 39./125.

SJR 2013: 0.309 - Q2 Metals and Alloys, 59./121.       

SJR 2012: 0.325 - Q2 Metals and Alloys, 33./90. (A)

SJR 2011: 0.363 - Q2 Metals and Alloys, 29./90. (A)

SJR 2010: 0.151 - Q3 Metals and Alloys, 68./90. (B)

SJR 2009: 0 - Q4 Metals and Alloys, 89./90. (C - according to the Slovak Journal Quality Criteria)

Indexed in: SCOPUS, Web of Science Core Collection, CROSSREF, GOOGLE SCHOLAR,CAMBRIDGE SCIENTIFIC ABSTRACTS, Committee on Publication Ethics (COPE)

IČO 00 397 610

EV 5174/15

p-ISSN 1335-1532, e-ISSN 1338-1156