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ABSTRACT 

Purpose: This paper analyses a problem that originates in the weighted-average 
model, a mathematical construct introduced by the theory of multicriteria 
decision-making that can be used to detect what product a customer desires. The 
problem occurs because the model needs to know the weight the customer 
assigns to each product feature, aside from the levels of all the product 
characteristics, in order to calculate the overall value of the product. And since 
by one approach the weights can be estimated by optimization, the question 
arises which optimization criterion to select for the procedure, as different criteria 
will lead to different weights and thus to different product evaluations. The paper 
analyses the problem in connection with the so-called consistency of pairwise 
comparisons, which are utilized in the optimization and describe how much the 
customer prefers one product feature to another. The analysis shows that the 
problem of which criterion to use to calculate the weights can be eliminated if the 
pairwise comparisons are consistent. The analysis is performed within pre-
defined criteria and is supplemented with case studies supporting the findings. 

Methodology/Approach: Linear algebra, optimization techniques, case studies. 

Findings: The results represent a prescription customers can use if they want to 
avoid the pitfalls of selecting a specific optimization criterion when informing 
the product maker about what they want based on the weighted-average model. 

Research Limitation/Implication: The results are related to a specific decision-
making model, although that model is still very general and natural. 

Originality/Value of paper: The problem of selecting an optimization criterion 
to determine decision weights is not discussed in the theory. 

Category: Technical paper 

Keywords: customer product; decision-making weights; consistency 
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1 INTRODUCTION  

In quality management, the role of customers is of paramount importance and 
many quality techniques are related to this concept (Zgodavova and Slimak, 
2008). It has therefore been historically imperative to learn what they desire so 
that an appropriate product could be designed, manufactured and ultimately 
delivered. Since many aspects or product characteristics enter the design of such 
products, and they often fight each other in the sense that an improvement of one 
feature deteriorates another, one might think of employing a discipline that is 
capable of setting up these product characteristics in such a way so as to turn the 
product design to a reasonable compromise, when it comes to the customer’s 
perceptions and desires. Among such disciplines, the theory of multicriteria 
decision-making (MDM) has had its sound position, having been tailored exactly 
for these kinds of problems. Generally speaking, as it doesn’t have to concern 
only product designs, the theory tries to solve the problem of which decision to 
make, or which product design to choose in our context, when more decision-
making criteria, or more product characteristics, are to be taken into account. The 
theory presents a variety of methods that try to pick a reasonably good decision, 
or product design. A class of these methods requires knowledge of weights or 
importance of the decision-making criteria, or product characteristics, in order to 
find a compromise among all the available decisions or product designs. These 
methods evaluate each decision, or product design, � by the expression  ������� + ⋯ + �	����	, where �
��� is the level of the i-th product 
characteristic under the considered design � and �
 is the nonnegative weight of 
that characteristic. All weights sum to one. The higher the value of the 
summation,  the more preferred the design �.   

One of the fundamental questions the theory tries to answer is how to select the 
weights, without which the calculation cannot be obviously performed. Several 
classes of methods exist in this regard. In one class, the methods are deterministic 
(Ishizaka and Nemery, 2013), whereas in another class the methods are stochastic 
and deal with uncertainty (Levy, 2015). The latter, based on the probability 
theory, is suitable for finding typical weights for an entire group of decision-
makers, or customers in our context, when the group is unknown as a whole and 
statistical principles must be applied to deduce the properties of that group on the 
basis of an analysis of its subsets. Yet another class of methods that model a 
different source of uncertainty in the decision-making process is the one 
employing the fuzzy set theory (Park et al., 2009; Wang, Kevin and Wang, 2009; 
Ye, 2010). Many of these methods use the so-called matrix of pairwise 
comparisons S which contains ratios of the unknown weights (Saaty, 2005). The 
ratios describe the magnitude of the weights when they are compared to one 
another. The higher the ratio, the more important the product characteristic 
represented by the weight in the numerator of the ratio, compared to the 
importance of the other characteristic represented by the weight in the 
denominator. If the ratio equals one, the two weights are the same, and the 
corresponding characteristics are equally important. The reason for this construct 
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is that it is usually simpler for the customer, and thus more accurate, one would 
expect, to state such a ratio than to provide the weights directly.  

Let � = 

� = �
/��. Each element 

� is usually defined using Saaty’s scale of 
grades ranging from one to nine (Saaty, 2005). The grades describe to what 
extent one product characteristic is preferred to another. The bottom grade of one 
means the two corresponding characteristics, the �-th and the �-th, are equally 
important, whereas the upper grade of nine prefers as much as possible the �-th 
characteristic to the �-th. Each grade has its specific verbal description that 
details the extent to which one characteristic is preferred to another. Such a 
description enables the customer to better quantify their perceptions about what 
is important and what is not. The elements 

� are inserted in the matrix S so as to 
make it reciprocal: 

� = 1/
�
. The main diagonal of the matrix naturally 
contains only ones. In the following text, it is assumed that the matrix has these 
properties and its size is at least 2 × 2, i.e. two or more product characteristics 
are involved in the analysis related to their weights.  

Given the matrix of pairwise comparisons, containing information about the 
opinions of the customer on the importance of the product characteristics, diverse 
methods are subsequently applied to evaluate the matrix. The methods result in a 
set of weights �
. These methods also include approaches that seek the weights 
by optimizing a mathematical expression which is a function of the elements of 
S. Such an optimization searches for the weights that, in a sense, bring the ratios �
/��  as close as possible to the provided values 

� . In order for this calculation 
to make sense, the matrix S must make sense in the first place. This is the reason 
why the matrix is required to be consistent. An �-by-� matrix is consistent if its 
elements satisfy the equations 

� = 

�
�� for all �, �, � = 1, 2, … , �. The 
amount of (in)consistency is measured by the inconsistency index �� − ��/�� −1�, where � is the largest eigenvalue of S. If the index is smaller than 0.1, the 
amount of consistency is considered good enough. In the case of a (fully) 
consistent matrix, it can be shown (Shiraishi, Obata and Daigo, 1998) that � = � 
and the index is thus zero. Generally, the smaller the index, the better.  

If the matrix S has a reasonably high consistency, the weights based on the 
matrix can be calculated. As has been outlined, such calculations may utilize an 
expression to be optimized, an optimization criterion O. The optimization occurs 
when the calculation provides the weights �
  that minimize O, an expression 
based on differences between �
/�� and 

�. Some of these expressions are 
provided later in the text. Naturally, the resulting weights generally depend on 
the type of the optimization criterion selected, which raises the question which 
optimization criterion to choose. One possibility is to employ the principles of 
goal programming for the set of available optimization criteria – it is possible to 
adopt optimization criteria ��, … , ��, the optimal values of which are ��, … , ��, 
respectively, if the criteria are used individually for finding the weights, and then 
find the weights that minimize ∑ ��
 − �
� 
 . This would take into account all the 
optimization criteria simultaneously. Such procedure, however, would not be 



QUALITY INNOVATION PROSPERITY / KVALITA INOVÁCIA PROSPERITA  24/3 – 2020  

 

ISSN 1335-1745 (print)    ISSN 1338-984X (online) 

40

elementary, as some of the terms in the summation can be expected to be 
nonlinear and even nonconvex functions of the weights, meaning that a sofware-
supported numerical procedure would be required to find only a local minimum 
of the expression at best, not even the global minimum. It is more convenient to 
select a single optimization criterion to avoid these mathematical problems. 
Although this may still result in a non-elementary procedure, the approach will 
generally be simpler. Of course, the question which optimization criterion to 
select still remains unanswered.  

This paper discusses the problem of selection of an optimization criterion, 
exploiting the concept of consistency of the matrix of pairwise comparisons S, 
because not only does this concept rationalize the matrix itself, but it also 
significantly contributes to solving the problem of which optimization criterion 
to use when finding the customer’s weights. The analysis focuses on a specific 
class of optimization criteria, which contains many popular mathematical 
expressions used for these purposes, and answers the question to what extent an 
element of this class plays a role in the whole procedure of finding the weights in 
the case of full consistency of the matrix S. 

2 EXACT WEIGHTS 

Let us start by analyzing the set of linear equations with n unknown weights ��: 
 �� = 

���, 1 ≤ � < � ≤ �, 

(1) 
 ∑ ��	
#� = 1. 

If we wanted a solution to (1) to represent true weights, inequalities should also 
be attached to (1) – each �
  should be nonnegative. We shall see, however, that a 
solution to (1), if it exists, automatically meets this condition. Let us also note 
that a solution to (1) trivially satisfies the equation �
 = 

��� for � = �, since 



 = 1, and given the reciprocity of S, �
 = 

��� also holds for � > �. Thus, if (1) 
holds, then �
 = 

��� holds for all the indices �, � = 1, 2, … , �.  
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In the matrix form, equations (1) can be expressed as:  
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The matrix M has �� − 1��� − 2� ∙ … ∙ 2 ∙ 1 + 1 = �� − 1�! + 1 rows and � 
columns, so its rank is at most �. Looking at the second, third, …, �-th column of 
this matrix, these columns are clearly linearly independent because only the 
trivial linear combination of these column vectors-the combination involving 
zero coefficients-yields the null vector (Bican, 2000). Let us see what happens 
when the first column of M is added to the group of the remaining columns. The 
new group of vectors cannot be linearly dependent because if it was, the first 
column would be a linear combination of the other �� − 1� columns with some 
coefficients ' , … , '	. This would mean that: 

 ' = 1/−
� , '( = 1/−
�(,…, '	 = 1/−
�	, (3) 

and so, given the last row of the matrix, 1 = �1/−
� � + ⋯ + �1/−
�	� would 
have to hold, which is impossible given that 

�’s are all positive. Therefore, the 
first column of M cannot be a linear combination of its other columns, in other 
words, the rank of M is exactly �. 

Let us now extend M by adding the column vector b, and write the matrix 
equation: 
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for some coefficients *
 . The symbol “~” replaces the n-th, n+1-st, …, the 
second-to-last row of M. Let S be fully consistent: 

� = 

�
��, �, �, � =
1, 2, … , �. Then, in particular, 

� = 

�
��, � = 1, … , � − 1, � > �, holds. For 
this reason, by setting up *
 = 

��1 + 
 � + ⋯ + 
	��+�, � = 1, … , �, we get: 

 *
 − *�

� = 0, � = 1, … , � − 1, � > �, (5) 

 1 = ∑ *

 , (6) 

which is the same as (4). In other words, nonzero coefficients *
 were found so 
that (4) is satisfied, and so the matrix M and the extended matrix (M, b) have the 
same rank because the last column of the extended matrix, the column b, is 
linearly dependent on its other columns by (4). By the Frobenius theorem (Bican, 
2000), this means that (1) has a solution. The solution will represent “exact 
weights” �
 in the sense that their ratio (the division is possible-see the discussion 
below) equals exactly the corresponding element from the matrix S. What’s 
more, the dimension of the set of all solutions to the equations Mv = 0 is known 
to be generally n – rank(M) (Bican, 2000), which is zero now. This means that 
the solution to the equations Mv = b is determined uniquely (Bican, 2000). The 

main result of this paragraph is that a fully consistent matrix S implies existence 

of a unique set of exact weights, or a unique solution to (1). 

The opposite implication is also true, however (Ramík and Perzina, 2008). If (1) 
has a unique solution, then S is fully or perfectly consistent. Therefore, the 
standard matrix of pairwise comparisons S, which is reciprocal, contains positive 
elements only and ones on its main diagonal, is fully or perfectly consistent if 
and only if there exist exact weights satisfying (1). When this happens, the exact 
weights are determined uniquely. 

When it comes to the resulting exact weights, none of the weights is zero. If a 
weight was zero, then all the weights would have to be zero to satisfy �
 =

��� , but then the weights could not sum to one, so (1) would be violated. 
Further, we also know that all the weights are positive. If they were all negative, 
they couldn’t sum to one again. If some of them were positive and others 
negative, �
 = 

��� couldn’t hold. The only solution is thus a set of positive 
numbers that represent true weights. 

To give an example of this situation, let: 
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The matrix satisfies our assumptions and is consistent-the index of inconsistency 
is zero, as the largest eigenvalue of the matrix is 3 (EqsQuest, 2017). Regarding 
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the rank of M and its extension (M,b), we have by elementary transformations 
(Bican, 2000): 
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Since the two matrices have the same rank of 3, the exact weights exist uniquely. 
Their values are �� = 0. 11////, � = 0. 66////, �( = 0. 22////, and they satisfy �
 = 

���, 
�, � = 1, 2, 3, �� + � + �( = 1, where 

�  is the element of S from its i-the row 
and j-the column. 

3 CONSISTENCY AND CRITERIA FOR FINDING WEIGHTS 

If S is not fully consistent, the exact weights do not exist, as we have seen. 
Another possibility then is to seek weights whose ratio is in a sense close to the 
corresponding elements 

�, which reflect the customer’s feelings about the 
ratios. Different optimization criteria were defined for this purpose-by optimizing 
these criteria, such an accession of the weights to the elements of S can be carried 
out. Standard optimization criteria include the expressions: 

 2 �

� − �
/��� ,
,�  (10) 

 2 �ln �

�� − ln ��
/���� 

,�  (11) 

and the weights are obtained by minimizing one of these criteria. This way, “the 
least squares method“ (LS) and “the logarithmic least squares method“ (LLS) 
were defined, the latter being also known as the method of geometric average, as 
the weights minimizing (11) can be expressed explicitly as a normalized 
geometric mean. From the mathematical point of view, to solve (10) or (11) 
means to seek the global extreme of the function of the weights (10) or (11) on 
the set 5 = 67: ∑ �
 = 1
 9 ∩ 67: �
 > 0, � = 1, … , �9. In the case of a fully 
consistent matrix S, when the exact weights exist, i.e. 

� = �
/��, and the 
weights are positive, as we have seen, so that the vector of the weights belongs to 
L, expressions (10) and (11) equal zero at the point represented by these exact 
weights. The two expressions cannot take on a lower value by their design, 



QUALITY INNOVATION PROSPERITY / KVALITA INOVÁCIA PROSPERITA  24/3 – 2020  

 

ISSN 1335-1745 (print)    ISSN 1338-984X (online) 

44

which means that the vector of exact weights is the point of global minimum of 
(10) and (11) on L. This is a rather simple but important result, because while 
minimizing (11) results in an explicit formula for the weights, the normalized 
geometric mean (Ramík and Tošenovský, 2013): 

 �
 = �
∗/ ∑ ��∗	�#� ,��∗ = <
��
� … 
�	=�/	 for � = 1,2, … , � (12) 

minimizing (10), for instance, is much more complicated. Many scholarly texts 
deal with the complexity of constrained optimization of similar functions 
(Bonnans et al., 2006; Nocedal and Wright, 2006; Bertsekas, 2016), and there is 
no complete theory in this respect to this date! Regarding the global minimum of 
(10) and (11), the same conclusion is clearly valid not only for LS and LLS, but 
for any criterion of the form A���, … , �	� = ∑ �B�

�� − B��
/���� 
,� , the 
minimization of which on L is to provide the suitable weights.  

Therefore, if the matrix of pairwise comparisons S is fully consistent, the global 

minimum of any such function g defined on L, with no other conditions imposed 

on this function, is at the point represented by the vector of exact weights. Since 

that vector is determined uniquely, the resulting weights, the exact ones, are the 

same regardless of what optimization criterion g is used for their calculation. In 

other words, the discussion on which criterion g to choose to find the weights is 

pointless, as all such criteria will give us the same vector of weights in the case 

of consistent S!  

The idea is portrayed in Fig.1 which describes the case of the optimization 
criterion g(v1,v2) = g(x,y) for a two-weight problem with the function f(⋅) = sin(⋅) 
and the matrix S made up of elements 
�� = 
  = 1, 
� = 2, 
 � = 0.5. 

Figure 1 shows that it may not be elementary to find the point of global minimum 
of the corresponding optimization criterion. When S is fully consistent, however, 
it is possible to resort to a far simpler criteron, such as the one used by LLS, to 
get the same point of extreme, i.e. the same weights. In this example, LLS yields �� = D = 0.66, � = E = 0.33. 
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Figure 1 – An Example of a More Complicated Optimization  

Criterion Z = G(X,Y) 

From what has been said so far, it should be clear that before starting to solve an 
MDM problem, a working matrix of pairwise comparisons S with a high degree 
of consistency should be first constructed. Hardly ever will it happen that the 
decision-maker, or the customer in this case, will manage to set up a perfectly 
consistent matrix. Then, one could try to adjust its elements to a small extent to 
make the matrix fully consistent. Such a procedure is not going to be simple 
unless a systematic approach is adopted. And such an approach can be designed. 
To turn a highly consistent matrix to the fully consistent one, we could try to 
solve the auxiliary optimization problem: 

 min	HH,…,	II
2 �
� 


,�  (13) 

subject to: 

 <

� + �
�=<
�� + ���= = �

� + �
��, �, �, ' = 1, … , �. (14) 

Viewing (13), (14), we want to change the elements of the not quite consistent 
matrix S to make it fully consistent, as described by (14), the change being 
expressed by the terms nij, but we want that change to be as small as possible, so 
that the change still reasonably reflects the original intentions of the decision-
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maker, or the customer. This procedure is not ideal in its current form, however, 
as it works with quite a few variables and constraints, and thus becomes 
cumbersome. Fortunately, it turns out it suffices if the constraints (14) are valid 
only for the indices i < j < k, i.e. for the elements above the main diagonal of the 
matrix S. If the problem (13), (14) is solved for these indices only, and the 
elements on the main diagonal of S are left to be equal to one, while the elements 
below the main diagonal are automatically changed to be reciprocal to the 
elements that solved (13), (14), the changed matrix will be fully consistent as is 
shown below. Moreover, small enough changes to the elements above the main 
diagonal will lead to small changes in the elements below the main diagonal 
because of the continuity of the reciprocal function. Thus one can focus only on 
altering as little as possible the elements above the main diagonal of S to secure 
its full consistency. 

To see this, if constraints (14) are satisfied for the indices i < j < k, i.e. the 
changed matrix is consistent in the elements above its main diagonal, then 
obviously: 
 
��
�
 = J 1


��
K J 1



�
K = 1



�
= 
�
 , (15) 

and so the changed matrix is consistent also in the elements below its main 
diagonal. If i < j > k, then we have, for the case i < k < j: 

 

�
�� = 

�
�� = 

�

�
��

� = 

�

�

� = 

� , (16) 

and, for the case k < i < j: 

 

�
�� = 

�
�

��
�
 = 
��
��
�
 = 

� , (17) 

so the changed matrix is also consistent if the property is checked with the 
elements both from above and below its main diagonal. Finally, to check this 
property with the elements from its main diagonal participating – the property is 
obviously valid if both the elements are from the main diagonal, i.e. they are both 
equal to one. If only one of them equals one, the result is also straightforward: 

 

�
�� = 




� = 

� 
or 

�
�� = 

�
�� = 

� = 

�. 

(18) 

To give an example of the procedure, we use the following matrix of pairwise 
comparisons with the amount of incosistency equal to 0.005.  
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Solving (13), (14) in Matlab for the elements above the diagonal of S, we obtain: 

 �� = 0.03, ��( = −0.03, ��L = −0.03, 
(20) 

 � ( = −0.02, � L = 0.24, �(L = 0.12. 
Thus, the adjusted matrix of pairwise comparisons is, after some diminutive 
rounding: 

 



















=

17027.235135.13367.0

37.0150505.012547.0

74.098.112481.0

97.297.703.41

*S . (21) 

The highest eigenvalue of �∗ is four, therefore the matrix is fully consistent. Still, 
it hasn’t changed much compared to the matrix S. 

4 CONCLUSION 

This paper analyzed relations between the consistency of the matrix of pairwise 
comparisons and the mathematical form of an optimization criterion which, using 
the comparisons, determines the weights or preferences provided by the customer 
before the overall product value, as perceived by the customer, is calculated. The 
impulse for the analysis was the fact that the resulting weights depend on the 
optimization criterion selected if the matrix of pairwised comparisons, used for 
the optimization, is not fully consistent. The conclusion of the analysis is such 
that within a general class of optimization criteria, it does not matter which 
criterion is selected for the calculation of the weights as long as the utilized 
matrix of pairwise comparisons is fully consistent. Since the optimization criteria 
result in the same set of weights in such cases, it makes sense to define the 
pairwise comparisons consistently, so that subsequently, any optimization 
criterion, and preferably the one that simplifies the calculations, can be selected 
to calculate the weights. Since it will be almost always difficult for the customer 
to define the pairwise comparisons in a fully consistent way immediately, the 
paper incorporated a procedure that will help the customer convert the provided 
pairwise comparisons to fully consistent ones. The procedure is most easily 
implemented with a suitable software incorporating optimization algorithms. 
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