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ABSTRACT  

Purpose: This research aims to design a model of a quality prediction system using 

data mining methods in the software-as-a-service (SaaS) environment in order to 

facilitate manufacturers' ability to analyse process and product quality without 

software investment. 

Methodology/Approach: To develop the quality prediction model, this study 

utilised a data mining methodology to extract knowledge from historical data 

collected from the offset printing industry, focusing on manufacturing parameters. 

Four classification algorithms (Decision Tree, k-NN, Naive Bayes, Random Tree) 

were employed and compared to identify the most precise model specifically 

tailored for offset printing. Subsequently, the prediction model was integrated into 

a web-based system to enable quality prediction. 

Findings: This study demonstrates the practicality of integrating quality prediction 

into the SaaS framework, specifically for offset printing. This integration is 

designed to predict how manufacturing control parameters, such as printing slope 

angle, engine temperature, paper size, ink density, and roller speed, relate to the 

occurrence of product defects such as crumpled paper and imprecise printing. 

Research Limitation/implication: Generalizability is constrained by its focus on 

the offset printing industry, and prediction accuracy relies on historical data, which 

can vary across manufacturing sectors, affecting model performance. 

Originality/Value of paper: This article presents the concept and practical 

implementation of utilising data mining in a SaaS environment to enhance the 

quality of manufacturing, with a particular emphasis on the offset printing sector. 

Category: Case study 

Keywords: data mining; offset printing; quality prediction; software as a service 

Research Areas: Quality 4.0, Quality Engineering  
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1 INTRODUCTION  

Offset printing is a modern printing technique that is used for the 

commercialisation of printing products such as newspapers, magazines, and others 

(Shankar, Ravi and Zhong, 2003; Lundström and Verikas, 2013). Quality and 

reliability are two important aspects that must be prioritised in the printing process 

because every company engaged in printing does not want print materials, such as 

paper, that are wasted due to defects (Shankar, Ravi and Zhong, 2009). Paper, ink, 

colour management, printing angle, ink-water balance, roller speed, machine 

temperature, and size of paper are several factors that can affect the quality of 

printing results (Ng, Conners and Araman, 1992; Kim and Koivo, 1994; Shankar, 

Ravi and Zhong, 2009). 

Some defects that can occur from the results of printing are crumpled paper, rough 

paper surface, piling, mottling, imprecise printing, etc. (Ejnarsson, Verikas and 

Nilsson, 2009; Lundström and Verikas, 2013). Based on factors and defect results 

in offset printing processes, several companies began to prioritise identifying these 

two aspects in order to improve the quality of products. 

In the digital era, characterised by easier access to vast data, manufacturers are 

actively seeking to leverage data for enhanced quality management systems 

(Efimova and Briš, 2021). One of the initiatives involves conducting an in-depth 

analysis to uncover how process parameter data can influence product quality 

using data mining. Data mining methods have already been shown to be an 

efficient tool to improve manufacturing product and process quality in 

semiconductor industry, bio-chemical process, or plastic production (Jemwa and 

Aldrich, 2005; Chien, Wang and Cheng, 2007; Charaniya et al., 2010). Data 

mining in a quality management system is a method that can be used to identify 

hidden patterns in manufacturing control parameters that aim to improve product 

quality (Harding et al., 2006). Previous research shows that data mining can 

produce patterns and association rule from parameter control as a factor that affect 

the quality of product, and it can be used for predictive analysis in manufacturing 

processes (Da Cunha, Agard and Kusiak, 2006; Kusiak, 2006; Köksal, Batmaz and 

Testik, 2011). 

The greatness of data mining is sometimes not applicable to companies because of 

high investment prices or the high complexity of the design and implementation 

of this method. (Medvedev et al., 2017) build a new web-based solution for 

modelling data mining processes called DAMIS. DAMIS is a data mining method 

that is implemented in cloud technologies. This web-based data mining show 

capabilities in data classification, clustering, and dimensionality reduction 

problems. With this solution, an organisation can analyse their data by using the 

web without having to build software investment. Another example of 

implementing web-based data mining is the Apromore software developed by (La 

Rosa et al., 2011). Apromore can do the analysis, management, and usage of large 

sets of process models. Apromore can do the process mining to build a business 

process model. Web-based data mining concept developed by (Medvedev et al., 
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2017) and (La Rosa et al., 2011) can be called as software-as-a-service (SaaS) 

concept. This concept provides services to clients to use data mining software in a 

web-based or online manner. SaaS is a prevalent software delivery model in the 

cloud (Elsayed and Zulkernine, 2019).  

2 USING SAAS IN QUALITY MANAGEMENT SYSTEM 

Manufacturing companies, both large or small and medium enterprise industries, 

face the challenge of delivering high-quality products while minimising the use of 

resources (Song et al., 2017; Colledani, Tolio and Yemane, 2018; Sahoo and 

Yadav, 2018; Khourshed and Gouhar, 2023). Hence, companies will implement 

and prioritise a quality management system in each manufacturing process. In a 

conventional quality management system, manufacturing data is obtained from the 

flow of material during the production process. After that, manufacturing data that 

has been obtained will be analysed using offline statistical-based analyser software 

such as SPSS or RapidMiner. (Gao et al., 2011) shows an example implementation 

of SPSS in processing manufacturing data, specifically to analyse the relationship 

between soy sauce composition as a manufacturing control parameter on the 

quality of product taste. Besides the statistical-based approach, in manufacturing 

data analysis, RapidMiner can be used as a data mining tool to get knowledge from 

historical data. Gröger, Schwarz and Mitschang, 2014 use RapidMiner to mine 

manufacturing data to evaluate production processes and improve the quality of 

products. After the process of data analysis, if the output of analysis shows that 

data is still in-control, so there is no corrective action. But, if there is out-of-control 

data, corrective action will be taken to improve manufacturing processes. 

Conventional quality management systems can be seen in Figure 1. 

Material Flow

Manufacturing 

Data

Data 

Analysis

Quality 

Monitoring

Corrective 

Action
Data Update

In-control Out-of-control

 

Figure 1 – The conventional quality system 

In quality management systems, SaaS can be used to analyse and predict the 

quality of products and manufacturing processes. With web-based quality 
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prediction systems, companies do not need to invest in quality software because 

they are only asked to import the data quality on the web. Quality control analyser 

processes in SaaS concept flow can be seen in Figure 2. 
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Figure 2 – The SaaS concept for quality prediction 

 

As shown in Figure 2, several clients can access the web-based quality engine. A 

quality engine processes data imported by a client into an output. The processing 

can be performed in the form of statistical-based or data-mining approaches to 

produce predictive analyses. 

Association rule or decision tree can be used as a result of data mining processing. 

This approach produces a quality prediction of product and manufacturing 

processes. This concept can be implemented in SaaS. After the association rule or 

decision tree is obtained, the predictive rule is implemented in web-based 

programming code. With this concept, the client imports data in a certain format 

to an online-database, and then the engine will process raw data with a data mining 

approach. The results of processing will be immediately seen or downloaded 

online by the client in a short time. 

3 METHOD  

The method focused on data mining methodology, which will be implemented in 

the SaaS concept. The stages in processing raw data into predictive analysis will 

be explained and continued with the stages of designing web-based quality 

prediction that are used as validation stages. In general, this research method is 

divided into five stages, namely data collection and selection, data preprocessing, 

knowledge extraction, knowledge presentation, and SaaS prototype 

implementation. 
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3.1 Data Collection 

Data collection is an important stage in the data mining approach. Relevant data 

must be obtained from the material flow in manufacturing plants. Several data 

collection methods were developed by (Lin, Yan and Fu, 2019) to determine 

relevant data from raw data. This research object is one of the offset printing 

companies in Indonesia that produces novels (storybooks). This company has 

manufacturing data control parameters and product defect data from production 

results. The manufacturing parameters in this offset printing company are as 

follows: 

 Printing slope angle: This parameter is related to the angle position in the 

printing device for each type of product, which can vary in terms of the 

angle value (300 ℃, 350 ℃, 400 ℃, 450 ℃, and 500 ℃).  

 Roller speed: This parameter is related to the printing device speed, which 

can be set depending on the production target (5000 rpm and 9000 rpm).  

 Printing engine temperature: This parameter is the temperature parameter 

of the machine, which can increase due to continuous processes on a scale 

of 260 ℃–280 ℃.  

 Paper size: This parameter consists of three types of paper size: S (small), 

M (medium), and L (large).  

 Ink density: This parameter is related to the ink-water balance, which can 

be different from one production to another production (60%, 70%, and 

80%). 

All of these manufacturing parameters will predict the effect of the two types of 

defective paper, namely, crumple defects in the paper cover and imprecise printing. 

An example of datasets of the relationship between the manufacturing parameter 

control and paper defects for each novel is presented in Table 1.  

There are 1,491 instances in the datasets that will be identified based on the 

manufacturing plant. Each of the 1,491 titles has a different number of production 

units. Aside from the difference in the number of productions, five manufacturing 

control parameters vary for each novel book, accompanied by the percentage of 

defects produced. Based on this data, data processing will be conducted using a 

control chart to measure the defective proportion of the production of each type of 

product. This raw data format can be used as an example of an imported data 

template from clients in uploading processes on web-based systems that will be 

designed. 
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Table 1 – An example of datasets from manufacturing parameter control 
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3.2 Data Preprocessing 

Data preprocessing is an essential aspect in the data mining approach to obtain 

final data sets, and one of the tools that can be used in the preprocessing stage is 

the control chart (García, Luengo and Herrera, 2016). An attribute control chart is 

usually used to control the process using attribute data, e.g., reject number. There 

are several types of control charts, i.e.,., np-chart, p-chart, c-chart, and u-chart 

(Chen and Cheng, 1998; Amirzadeh, Mashinchi and Parchami, 2009; Chong, Khoo 

and Castagliola, 2014). A p-chart is a type of control chart used to measure the 

reject proportion of the production, and it can be used when the number of samples 

collected is not constant (Chukhrova and Johannssen, 2019). This research used p-

chart to make valid category limits for each defect, and the equation models are as 

follows: 

𝑛̅ =
∑ 𝑥𝑖

𝑘
𝑖=1

𝑘
  (1) 

𝑝̅ =
∑ 𝑎𝑖

𝑘
𝑖=1

𝑛̅ 𝑥 𝑘
  (2)  

𝑈𝐶𝐿 = 𝑝̅ − 3√
𝑝̅(1−𝑝̅)

𝑛̅
  (3) 

where 𝒏̅ – sample mean; k – number of observations, 𝒙𝒊 – number of productions 

for title i, 𝒑̅ – defect proportion, 𝒂𝒊 – number of defects for product i; and UCL – 
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Upper Control Limit. Based on equations 1 to 3, this research obtained a UCL 

value of 0.003459 (crumpled paper) and 0.003286 (imprecise printing). 

3.3 Knowledge Extraction 

Knowledge extraction is the stage of extracting information from data to be used 

as knowledge (Gangemi et al., 2016; Yang et al., 2018). All stages of this 

extraction are using RapidMiner Studio software. RapidMiner is open-source 

software for analysing data mining. Processing data using RapidMiner was aimed 

at obtaining knowledge from databases that do not yet have entities (Ristoski, 

Bizer and Paulheim, 2015). The mining process focused on the slope angle, roller 

speed, engine temperature, paper size, and ink density. It led to assessments of 

defects, determining whether they were considered acceptable or unacceptable. 

The layout design for knowledge extraction in the RapidMiner software is 

presented in Figure 3.  

 

Figure 3 – Knowledge extraction processes in RapidMiner 

As shown in Figure 3, there are three steps in the knowledge extraction process:  

(1) Read Excel: This research performed the extraction processes using an import 

database method with an Excel file.  

(2) Error minimising process: The replacement missing value technique and data 

value removal were used at this stage to complete existing data or make existing 

data available for processing.  

(3) Cross-validation: This is a statistical method that evaluates and compares the 

algorithm by dividing data into two types of data, namely, training data (used for 

training models) and testing data (data that are used after training models). This 

last step is presented in Figure 4. 

 

Figure 4 – Process view cross-validation in RapidMiner 
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As shown in Figure 4, a decision tree is used to describe the structure of the model. 

This structure can be used for prediction processes from a set of inputs to be the 

desired output. Table 2 shows that the decision tree has the highest accuracy value. 

Using these findings, the decision tree functions as a forecasting method, 

generating outcomes for quality prediction. The outcomes from the decision tree 

display predictions linked to manufacturing control factors (such as printing slope 

angle, roller speed, paper size, engine temperature, and ink density) related to 

defects, illustrated in Figures 5 and 6. 

Table 2 – Predictive algorithms accuracy 

No. Predictive 
Algorithms 

Crumple 
Paper 

Imprecise 
Printing 

1 Decision 
Tree 

95.64% 95.48% 

2 k-NN 91.41% 92.42% 

3 Naïve Bayes 81.15% 80.81% 

4 Random 
Tree 

75.45% 75.51% 
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Figure 5 – Decision tree for crumpled paper defect 
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Figure 6 – Decision tree for imprecise printing defect 

3.4 SaaS Prototype Implementation 

After obtaining the decision tree models, the next step is implementing the model 

into a web programming code. This programming code acts as a data processing 

tool for quality prediction in the SaaS concept. The proposed algorithm for the 

Engine 

Temperature

Unacceptable Roller Speed

Ink DensityInk DensityInk Density Ink Density Unacceptable

Unacceptable

Unacceptable

Acceptable

Unacceptable

Unacceptable

Acceptable

Unacceptable

Acceptable

Unacceptable

Acceptable

Paper Size

Unacceptable

> 27.40 ≤ 27.40

5000

6000
7000

8000

9000

0.6

0.7

0.8

0.6

0.7

0.8

0.6

0.7

0.8

0.6

0.7

0.8

Note:

Acceptable = No imprecise printing defects

Unacceptable = Imprecise printing defects

Acceptable

Unacceptable

L

M



QUALITY INNOVATION PROSPERITY / KVALITA INOVÁCIA PROSPERITA  27/3 – 2023  

 

ISSN 1335-1745 (print)    ISSN 1338-984X (online) 

118 

crumpled paper defect and imprecise printing defect model as a result of the decision 

tree is presented in Figures 7 and 8. 

 
Figure 7 – The proposed quality prediction algorithm (crumpled paper defect) 
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Figure 8 – The proposed quality prediction algorithm (imprecise printing defect) 

Two algorithms in Figures 7 and 8 will be implemented in web programming code 

(PHP code). This research builds a prototype SaaS concept for quality prediction 

with localhost server (using XAMPP software). The user interface of this web-

based quality prediction can be seen in Figures 9 to 11. 
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Figure 9 – Home user interface 

 

Figure 10 – The user display for upload data 

 

Figure 11 – The user display for download data 

The prototype web quality prediction is the ARCINDO beta version (as in the 

home user interface shown in Figure 9), which in the future will be developed into 

a full version and can be accessed by all manufacturing companies. An example 

of the user display for uploading product and process quality data (in Excel format) 

is shown in Figure 10, and the display for downloading data by the user is 

presented in Figure 11. Users can download the product and process prediction 

results in a PDF or MS Excel format. 

4 CONCLUSION 

In this part, the system will be tested by generating random data (manufacturing 

parameter control and defect data) to be inputted into the web-based quality 
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prediction ARCINDO software, and it will test the prediction results in the system. 

MATLAB is used for generating parameter control and defect data. The random 

number generator method is used in MATLAB for generating data. An example of 

random data in the Excel format is presented in Figure 12. 

 

Figure 12 – An example of excel input format 

After generating random data, the Excel data (1500 data) will be uploaded in the 

ARCINDO system to predict product defects for each ID. The processing time of 

this system is quite fast. For example, the processing for 1500 data only takes less 

than 5 s. The results of the processing data are presented in Figure 13. 

 

Figure 13 – An example of PDF output format 

Based on the implementation results, the data mining process in the SaaS concept 

was successfully performed. The output can be presented in two formats, i.e., PDF, 

which can be used as a reporting material, and Excel, which can later be further 

processed by clients from the quality prediction systems. 
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5 CONCLUSION 

This research aims to build a quality prediction using the model in the SaaS 

concept prototype using a data mining method. Based on a case study in the offset 

printing manufacturing industry, quality prediction using the SaaS concept is 

feasible in companies. In the processing stage, data mining methods can be used 

as tools for prediction. In this case, the use of decision trees can provide a 

conclusion for acceptable or unacceptable products from the manufacturing 

parameter control. Nonetheless, many developments can still be done from this 

research, including applying the SaaS concept to prototypes and implementing it 

continuously in manufacturing companies, using other data mining algorithms to 

achieve higher accuracy, and using other methods in preprocessing data to produce 

acceptable and unacceptable determinations. 
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