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ABSTRACT  

Purpose: This paper proposes using confidence intervals for the mean to select  

a suitable time-dependent distribution model for a process with non-normal 

instantaneous distributions. 

Methodology/Approach:  The approach examines a studied characteristic by 

analysing its distribution, location, dispersion, and shape, all of which are time 

functions. The values of the characteristic are determined by sampling from the 

process flow. A time-dependent distribution model represents the process.  

Findings: The paper explains how to utilise confidence intervals for the mean 

when selecting an appropriate time-dependent distribution model for processes 

with non-normal instantaneous distributions.  

Research Limitation/Implication: The methods described in this document 

pertain exclusively to continuous quality characteristics and can be applied to 

analyse processes across various industrial and economic sectors. The presented 

procedures are appropriate for use when the instantaneous distributions are non-

normal. 

Originality/Value of paper: Confidence intervals for the mean can improve 

decision-making when selecting a suitable time-dependent distribution model.  

Category: Research paper 

Keywords: confidence interval for the mean; time-dependent distribution model; 

random sample; non-normal distribution 

Research Areas: Quality Engineering 
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1 INTRODUCTION  

A crucial aspect of understanding a process is identifying its distribution and 

evaluating its capability or performance. Time-dependent distribution models 

describe how a characteristic evolves over time. This article builds on "Terek, 

2025," where we discussed using confidence intervals for the mean and variance 

to select an appropriate time-dependent distribution model when all instantaneous 

distributions are normal. In this paper, we examine the application of confidence 

intervals for the mean in situations where the instantaneous distributions are non-

normal. 

Most of the literature concerning the performance of the processes assumes that 

the process is in a state of statistical control, with stationary, normally distributed 

processes. Reliable predictions of process performance can only be achieved when 

the process is stable, meaning its distribution parameters remain unchanged over 

time. A process with only common causes of variation is said to be in statistical 

control (in an in-control state) or a stable process. A process affected by both 

common and assignable causes is an out-of-control process (in an out-of-control 

state) or an unstable process. Processes will often operate in the in-control state for 

relatively long periods. However, no process is truly stable forever, and, 

eventually, assignable causes will occur, seemingly at random, resulting in a shift 

to an out-of-control state where a larger proportion of the process output does not 

conform to requirements. A major objective of statistical process control is to 

quickly detect the occurrence of assignable causes of process shifts so that 

investigation of the process and corrective action to return the process to an in-

control state may be undertaken before many nonconforming units are 

manufactured (Montgomery, 2020, p. 189). Unfortunately, in many processes, the 

assumption that the process is in a state of statistical control and is normally 

distributed with constant parameters, which can change only by the influence of 

known assignable causes, may not be met. Oakland and Oakland (2019, pp. 316-

317) state that numerous potential assignable causes exist for out-of-control 

processes. Providing a complete list of assignable causes for a specific process is 

practically impossible. When the process is out of control, it can often be difficult 

to identify the assignable causes responsible for it. Consequently, we cannot take 

corrective actions to bring the process to an in-control state. Additionally, the 

common causes may change over time; thus, the process distribution may change, 

even without assignable causes (Oakland and Oakland, 2019, p. 317; Terek, 2025). 

On the other hand, we can identify specific assignable causes, such as regular 

fluctuations in environmental conditions like changes in humidity and temperature. 

These fluctuations can lead to cyclical or trending changes in the monitored 

characteristics. However, reducing these fluctuations may be technologically 

impossible or economically inappropriate.  

Effective process control and improvement must be based on careful analysis. 

Therefore, it is useful to analyse the process behaviour over time and to recognise 

the suitable time-dependent distribution model. An appropriate method of process 
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performance assessment and statistical process control can only be chosen based 

on the results of such analysis.  

The capability and performance indices are one of the essential tools for measuring 

process performance (Terek and Hrnčiarová, 2004; Pearn and Kotz, 2006; Costa 

et al., 2019; Tošenovský and Tošenovský, 2019; Montgomery, 2020; Benková et 

al., 2024; ISO/DIS 22514-2, 2024). The capability indices may only be used if the 

process is stable. If the stability cannot or should not be evaluated, or if the process 

is explicitly unstable, the performance indices are used. The methods to calculate 

these indices depend on the time-dependent distribution model applied to the 

process. ISO/DIS 22514-2, 2024 lists various methods for calculating location and 

dispersion estimates to compute process capability and performance indices. It 

specifies which methods are suitable for different time-dependent distribution 

models of the process (ISO/DIS 22514-2, 2024, Table 5). Therefore, accurately 

estimating the time-dependent distribution model for the process is crucial for the 

right calculation capability and performance indices. Additionally, the type of 

time-dependent distribution model is an important factor in determining a suitable 

statistical process control method. For instance, ISO/DIS 11462-1, 2025, specifies 

on page 33 in Table 9 which control charts are recommended for various time-

dependent distribution models.  

Typically, significance tests are suggested for identifying a suitable time-

dependent distribution model for a process. However, in many instances, 

significance tests are not as informative as confidence intervals (Agresti et al., 

2023, pp. 462-463). Confidence intervals not only help determine if a hypothesis 

regarding the stability of parameters over time can be rejected, but they also offer 

a range of plausible values for the population parameters. 

This paper will investigate how confidence intervals for the mean can be used to 

estimate time-dependent distribution models for processes with non-normal 

instantaneous distributions. We will use simulations to illustrate this concept. 

Applying the proposed approach to assessing a time-dependent distribution model 

can lead to more accurate and reliable process characterisation, resulting in better 

decision-making.  

We begin by categorising time-dependent distribution models when the 

instantaneous distributions are non-normal. Then, we describe how to use the 

confidence intervals for the mean to determine the type of time-dependent 

distribution model. Finally, we demonstrate the obtained results through 

simulations. 

2 LITERATURE REVIEW 

The instantaneous (short-time) distribution describes the behaviour of the 

characteristic during a short time interval, typically when a sample is taken from 

the process. The process distribution when a process is observed continuously over 

a longer period is called the resulting distribution. This distribution is described by 
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a time-dependent model that reflects the instantaneous distribution of the 

characteristic being followed and the changes in location, dispersion, and shape 

parameters during the time interval of process observation. The resulting 

distribution can be represented by the entire dataset or all subgroups obtained 

during the process observation period (ISO/DIS 22514-2, 2024; Terek, 2025).  

Eight different time-dependent distribution models are known. Terek (2025) states 

their classification (see also ISO/DIS 22514-2, 2024; Jarošová and Noskievičová, 

2015). 

The models A1, B, C1, and C2 are analysed in Terek (2025). This paper will focus 

on models that do not assume a normal distribution for the instantaneous 

distributions. Specifically, we will examine the following models:  

• Model A2: This model features non-normal but unimodal instantaneous 

distributions with constant location and dispersion. 

• Model C3: Characterised by a systematic (trend) change in location, this 

model has unimodal instantaneous distributions and the resulting 

distribution of any shape. 

• Model C4: In this model, there are systematic and random changes in 

location.  Instantaneous and resulting distributions are of any shape.  

For models C3 and C4, the cause of the trend may be gradual wear of the tool 

during turning, grinding, or drilling, etc., but also gradual change in the 

composition or efficiency of chemical solutions or catalysts, gradual cooling or, 

conversely, heating of the material, for example, during mechanical processing, 

etc. At the moment of reconditioning or replacing the tool, using a new solution or 

batch of material, a sudden change in the data occurs in the opposite direction. 

Cyclical changes in the characteristic being considered may result from the 

regulation of process parameters or regular fluctuations in environmental 

conditions such as temperature and humidity. Reducing this fluctuation may be 

either technologically impossible or economically disadvantageous in current 

conditions (Jarošová and Noskievičová, 2015, p. 48; Zgodavová et al., 2020). 

• Model D: This model includes systematic and random changes in location 

and dispersion. Instantaneous and resulting distributions can take any 

shape. 

The process analysis should identify a suitable time-dependent distribution model. 

Normality tests determine whether a normal distribution can accurately represent 

a population. Several tests are available for this purpose (Ghasemi and Zahediasl, 

2012; Thode, 2002). Suppose the normality assumption is rejected for the 

instantaneous distributions. In that case, it is advisable to use a median-based test 

instead of a mean-based one (Median Test) to test that the medians of the 

populations from which samples are drawn are identical. When samples originate 

from non-normal distributions, the equality of variances can be assessed using 

Levene's or Brown-Forsythe's test (Levene's Test, Brown-Forsythe Test).  
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A histogram can help determine whether the distribution is unimodal or has 

another shape. For small datasets, histograms can vary significantly based on the 

number and width of the bins used. Therefore, histograms are more reliable for 

larger datasets, ideally with a size of 75 to 100 or more (Montgomery and Runger, 

2018, p. 137).   

3 METHODOLOGY 

Suppose we take more random samples from the process flow over a time that 

covers all potential expected changes. The behaviour of the parameters in 

instantaneous distributions will be studied based on these samples. 

We have written that the instantaneous distribution describes the behaviour of the 

characteristic during a short time interval, typically when a sample is taken from 

the process. The population at that time was finite. If we assume that the process 

remains stable during this interval, it means that the environment and the 

characteristics of the process exhibit some degree of permanence. While there may 

be fluctuations in these characteristics and the environment, such fluctuations 

occur slowly relative to the production speed. Therefore, the finite population 

existing at a given time interval can be viewed as part of an imaginary, infinite 

population that exists over time, where the conditions of the process remain 

constant. As a result, the obtained random sample can be considered a random 

sample from this infinite population (Giard, 1985, pp. 167-168). 

A random sample of size n from an infinite population is selected in such a way 

that it meets the two following conditions. All units in the sample are drawn from 

the same population. Each unit is selected independently (Anderson et al., 2020, 

p. 324). Then, the observations are statistically independent and identically 

distributed random variables, and the usual statistical inference methods can be 

used. The sample should consist of units produced simultaneously or as closely 

together as possible to ensure that all observations are from the same population 

(probability distribution). Ideally, consecutive units of production should be taken. 

The independence conditions should be fulfilled so that the units are produced 

independently. Therefore, the production of each unit can be viewed as the 

execution of an independent random experiment (Terek, 2025).  

We calculate the  (1 – )100% confidence interval for the mean for each sample. 

If x is the value of the sample mean of a random sample of size n from a normal 

population with a known variance 2 , then,  

                                    �̄� − 𝑧1−
𝛼

2

𝜎

√𝑛
 ≤  ≤ �̄� + 𝑧1−

𝛼
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           𝑧1−
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2
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2
)100% quantile of the standard normal distribution, 

           𝜎 = √𝜎2   ̶  standard deviation, 
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is the (1 – )100% confidence interval for the mean. According to the central limit 

theorem, these results can also apply to random samples from non-normal 

populations, provided that the sample size n is sufficiently large; specifically, n 

should be at least 30. In that case, we may also substitute for σ the value of the 

sample standard deviation s, where  

 

𝑠 = √
1

𝑛 − 1
∑(𝑥𝑗 − �̄�)

2
𝑛

𝑗=1

 

 

(Miller and Miller, 2014, p. 320; Terek, 2017a; Terek, 2017b; Terek, 2019).  

We will assume the large samples of the same size n (n ≥ 30), and the same 

confidence level (1 – ) for all confidence intervals for the mean, which are 

calculated using the following formula: 

                          �̄� − 𝑧1−
𝛼

2

𝑠

√𝑛
 ≤  ≤ �̄� + 𝑧1−

𝛼

2

𝑠

√𝑛
                                          (2) 

Let’s consider two independent random samples of size n, drawn from two 

populations with means 𝜇1 and 𝜇2. We will calculate confidence intervals (2) for 

𝜇1 and 𝜇2 based on these samples. In Terek, 2025, it is proven that if the two 

intervals (2) do not overlap or just touch each other in the test: 

𝐻0: 𝜇1 = 𝜇2                          (3) 

𝐻1: 𝜇1  𝜇2 

Based on the same two samples at the significance level, we reject 𝐻0 in favour of 

𝐻1.  

We draw several independent random samples from the process flow over a period 

that captures all potential expected changes. Suppose corresponding instantaneous 

distributions are non-normal. For each sample, we calculate the corresponding 

confidence interval for the mean, using the same confidence level (1 – ) and 

sample size n. We can draw specific conclusions from the time series diagram of 

these confidence intervals. If at least two confidence intervals do not overlap or 

merely touch, we can conclude that the process mean changes over time. However, 

if all the confidence intervals overlap, it does not necessarily indicate that the mean 

is not changing over time. We should consider performing tests for pairs of means 

(3) or using a median test in such cases. The time series diagram of confidence 

intervals can also reveal trends or cycles in the evolution of the means of the 

instantaneous distributions, if they exist. 

If the instantaneous distribution is non-normal, we cannot calculate the 

corresponding confidence interval for the variance. The margin of error in a 

confidence interval (2) is defined using the following formula: 

                                                        𝑧1−
𝛼

2

𝑠

√𝑛
                                                                   (4) 
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The confidence level (1 − 𝛼) and sample size n are constant across all confidence 

intervals in the time series of confidence intervals for the mean.  As a result, the 

width of the confidence intervals is proportional to the sample standard deviation, 

s. If the sample standard deviation is used to estimate the population standard 

deviation 𝜎,  the width of the confidence interval offers an initial insight into the 

evolution of the standard deviation of the instantaneous distributions. A wider 

confidence interval indicates a greater population standard deviation. By 

comparing the confidence interval widths, we can evaluate the stability of standard 

deviations and identify any trends or cycles in their evolution, if they exist. It is 

important to note that the sample standard deviation is not an unbiased estimator 

of the population standard deviation, even if the population follows a normal 

distribution. Furthermore, the sample standard deviation is only a point estimator. 

Therefore, the procedure mentioned should be viewed as an exploratory analysis 

only. For confirmatory analysis, it is advisable to use Levene's or Brown-

Forsythe's test to assess the equality of variances.  

The following procedure can be used: More random samples will be drawn from 

the process flow over a time that covers all potential expected changes. Suppose 

the normality of the instantaneous distribution was rejected based on the first 

sample, let’s say with a size of n = 30. From this, it can be concluded that all 

subsequent instantaneous distributions will also follow a non-normal distribution. 

It is generally accepted that a process with a non-normal distribution will not 

spontaneously transform into a normal distribution without some form of external 

change or intervention. Then, increasing the sample size to n = 75 by adding 45 

observations is recommended, and continuing the sampling with this larger size to 

determine whether the instantaneous distributions are unimodal or of any shape, 

using histograms. Afterwards, the calculation of the confidence intervals for the 

mean and the diagram drawing of the time series for these confidence intervals are 

realised. Lastly, based on all samples collected during the observation period, we 

will analyse the resulting distribution using a histogram to determine if it is 

unimodal or has a different shape. 

4 SIMULATION EXPERIMENTS  

In this paper, we only examine cases where we cannot accept the normality of the 

instantaneous distributions. This includes models A2, C3, C4, and D. As in Terek 

(2025), we will consider one characteristic: the dimension of a product, which will 

be measured in millimetres (mm). 

In situation A2, we model all instantaneous distributions as the distributions of the 

random variable X = 99.96 + (1/30)W, where W follows a Weibull distribution 

with parameters λ = 1,  k = 1.5. The distribution of X  is continuous, unimodal, 

and skewed to the right. We generated ten random samples, each containing 75 

observations from this distribution. Next, we calculated a 95% confidence interval 

for the mean for each sample. We have included a diagram displaying all 750 
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observations (Figure 1 on the left) and a time series diagram of the confidence 

intervals for the mean (Figure 1 on the right). 

In situation A2, the confidence intervals diagram (see Figure 1 on the right) shows 

that all intervals overlap. This suggests that we have not proven the differences in 

means of the instantaneous distributions; however, it does not necessarily imply 

that the means are equal. In such cases, it is advisable to conduct test (3) for the 

pairs of means or a test based on the median. The comparison of the widths of the 

confidence intervals suggests that there may not be a difference in the standard 

deviations of the instantaneous distributions. This result of an exploratory analysis 

should be confirmed using Levene's or Brown-Forsythe's test.  

Figure 1 – A2: Observations and confidence intervals for the mean 

In model scenario C3, we represent all instantaneous distributions as the 

distributions of the random variable X = a + (1/15)W, where W  follows a 

Weibull distribution with parameters λ = 1 and k = 1.5. The value of a  in this 

expression is 99.96 for the first sample, and increases regularly by 0.01 with each 

subsequent sample. The distributions of X are continuous, unimodal, and skewed 

to the right.  We generated 10 random samples from these distributions, each 

comprising 75 observations. We calculated a 95% confidence interval for the 

mean for each sample. We have included a diagram displaying 750 observations  

(Figure 2 on the left) and a time series diagram of the calculated confidence 

intervals for the mean (Figure 2 on the right). 

In Case C3, the confidence intervals diagram for the mean shows non-overlapping 

intervals. This indicates that we have statistical evidence that the mean varies over 

time. In addition, the diagram very clearly shows an upward trend in the means. 

The comparison of the widths of the confidence intervals suggests that there may 

not be a difference in the standard deviations of the instantaneous distributions. As 

with Case A2, this result should be confirmed using Levene's or Brown-Forsythe's 

test.  
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Figure 2 – C3: Observations and confidence intervals for the mean 

In situation C4, we assume that all instantaneous distributions are continuous 

uniform, with a lower limit that increases regularly from 99.99 to 99.993 in 

increments of 0.001. Following this, the lower limit decreases from 99.993 to 

99.99 in increments of 0.001. Finally, the lower limit increases from 99.99 to 

99.993 in increments of 0.001. The range of the uniform distribution remains 

constant at 0.02 throughout these changes. We generated 10 random samples from 

these distributions, each comprising 75 observations. We calculated a 95% 

confidence interval for the mean for each sample. We have included a diagram 

displaying 750 observations (Figure 3 on the left) and a time series diagram of the 

calculated confidence intervals for the mean (Figure 3 on the right).  

In situation C4, the confidence interval diagram for the mean shows non-

overlapping intervals. This indicates that we have obtained statistical evidence that 

the mean changes over time. Additionally, the diagram clearly illustrates cyclical 

variations in the means. The comparison of the widths of the confidence intervals 

suggests, similar to what we observed in models A2 and C3, that there may not be 

significant differences in the standard deviations of the instantaneous distributions. 

This should be confirmed using Levene's or Brown-Forsythe's test.  
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Figure 3 – C4: Observations and confidence intervals for the mean 

In model scenario D, we assume all distributions are continuous uniform, with 

lower limits between 99.990 and 100.001 mm and the range between 0.01 and 

0.031 mm. We generated 10 random samples from these distributions, each 

comprising 75 observations. We calculated a 95% confidence interval for the mean 

for each sample. We have included a diagram displaying the 750 observations 

(Figure 4 on the left) and a time series diagram of the calculated confidence 

intervals for the mean (Figure 4 on the right). 

 

 

 

 

 

 

 

 

Figure 4 – D: Observations and confidence intervals for the mean 

In Case D, the confidence intervals diagram for the mean contains non-overlapping 

intervals. This indicates statistical evidence that the mean varies over time. 

Furthermore, comparing the widths of confidence intervals may indicate 

differences in the standard deviations of the instantaneous distributions. This 

hypothesis should be verified using Levene's or Brown-Forsythe's test.  

In all the models mentioned, histograms can be created from the sample data to 

assess whether the instantaneous distributions are unimodal or display a different 

shape. This method also applies to the overall distribution, where data from all 

samples can be used to create a histogram.  
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5 CONCLUSION  

The paper discusses using confidence intervals for the mean to estimate a time-

dependent distribution model for the process. The time-dependent distribution 

model used for the process determines the method for calculating capability and 

performance indices. Additionally, it is an important factor in selecting an 

appropriate statistical process control method. 

We suppose that more random samples will be drawn from the process flow over 

a time that covers all potential expected changes, and that all instantaneous 

distributions are non-normal. For each sample, the confidence interval for the 

mean is calculated, with all confidence intervals sharing the same confidence level 

and sample size. Then,  a time series diagram of these confidence intervals for the 

mean is drawn.  It is known (Terek, 2025) that if, under defined conditions, at least 

two confidence intervals for the mean (2) do not overlap or just touch each other, 

we can conclude that the process's mean changes over time. These diagrams can 

also assist in identifying trends or cycles in the evolution of the mean, if they exist. 

However, if all the confidence intervals overlap, it does not necessarily indicate 

that the mean is not changing. We should consider performing tests for pairs of 

means (3) or using a median test in these situations.  

The width of the confidence intervals for the mean (2) is influenced by the sample 

standard deviation s, which estimates the population standard deviation σ. These 

widths can indicate the stability of the standard deviation in instantaneous 

distributions (when the confidence levels and sample sizes are the same across all 

confidence intervals). Additionally, it can help identify the trends or cycles in the 

evolution of the standard deviation, if they exist. However, since the sample 

standard deviation is not an unbiased estimator of the population standard 

deviation and is only a point estimator, this approach should be considered only 

exploratory. Conducting either Levene's or Brown-Forsythe's test is recommended 

to confirm any findings.  

If the assumption of a normal distribution for the instantaneous distribution is 

rejected, we recommend using a sample size of n = 75 to analyse it and determine 

whether it is unimodal or has a different shape. This sample will also be used to 

calculate the confidence interval for the mean. A histogram with the data from all 

samples can be used to examine the overall distribution.  

We have simulated the process behaviours according to the time-dependent 

distribution models A2, C3, C4, and D. The created time series diagrams of 

confidence intervals for the mean illustrate their usefulness in assessing the 

stability of the mean of instantaneous distributions over time and for identifying 

any trends or cycles in the mean's progression (see Figures 2 and 3). They also 

serve as valuable tools for exploratory analysis of how the standard deviation of 

the instantaneous distributions evolves. 

The results of this study are theoretically intriguing, as they utilise a new 

methodology for estimating a time-dependent distribution model. This approach 
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has practical implications, as it offers a quick and informative overview of the most 

suitable model. The confidence intervals for both the mean and variance can be 

used in confirmatory analysis when the instantaneous distributions follow a normal 

distribution (Terek, 2025). This allows for mapping movements in the mean and 

variance while identifying existing trends and cycles in these parameters. The 

understanding of the relationship between the overlap of confidence intervals and 

certain hypothesis tests can also be beneficial in other contexts.  

This paper specifically examines the use of confidence intervals for the mean when 

the instantaneous distributions do not follow a normal distribution. One significant 

advantage of confidence intervals, compared to hypothesis testing, is their ability 

to identify existing trends and cycles. Additionally, unlike hypothesis tests, 

confidence intervals provide a range of plausible values for population parameters. 

Confidence intervals for the mean are also beneficial in exploratory analysis. 

Given the same sample size and confidence level, they offer insights into the 

evolution of variance. The capacity of confidence intervals to visually synthesise 

the overall situation is noteworthy, reinforced by the diagrams presented. 

Overall, confidence intervals in this context can be understood as a supplementary 

tool to relevant statistical tests. They can even replace such tests when the intervals 

do not overlap. In contrast to hypothesis testing, confidence intervals provide 

additional advantages. By employing this approach to estimate a time-dependent 

distribution model, we can achieve a characterisation of the process that is quicker, 

more accurate, informative, and reliable, ultimately leading to improved decision-

making. 
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