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ABSTRACT

Purpose: In process capability analysis, violation of the normality assumption is
considered a non-standard situation. This paper defines and categorises causes of
non-normality in manufacturing processes, which are essential for quality
planning, control, and selecting appropriate analytical procedures. Based on a
literature review and systematic investigation, four main categories have been
identified. Each category is analysed in detail with practical implications for
capability analysis. The paper provides a comprehensive framework for
identifying non-normality causes and guiding further analysis steps.

Methodology/Approach: Systematic literature review and expert synthesis of
causes, supported by practical examples and categorisation into four key areas

Findings: four categories of non-normality causes identified; each requires a
specific analytical approach before capability analysis can proceed

Research Limitation/Implication: Focuses on categorisation; future work should
develop automated detection methods and validate solutions across diverse
industries

Originality/Value of paper: Provides first comprehensive framework for
identifying non-normality causes in manufacturing, bridging theory and industrial
practice

Category: Technical paper

Keywords: non-normality of data; causes of non-normality, process capability
analysis

Research Areas: Quality Engineering
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1 INTRODUCTION

Evaluation of the capability of manufacturing processes is an integral part of
product quality planning and management. Process capability analysis provides
key information on whether the process can produce products of the required
quality. The basic prerequisites for assessing process capability are the process in
control and the normality of the observed quality characteristic. Standard
capability indices assume normality and are used to assess process capability.

In the practical application, particularly in relation to the fulfilment of the required
prerequisites, a number of errors can be encountered in the process capability
analysis — data normality is not verified, process capability is evaluated even if
normality is not met, an inappropriate statistical test is chosen to assess normality,
the interpretation of the results is limited to the achievement or non-achievement
of the desired valued of the selected capability index, etc. In case of non-normality,
users usually do not know how to interpret and work with other probability
distributions.

The behaviour of real production processes commonly shows violations of basic
assumptions for process capability analysis. The situation where the process is in
control and data come from a normal distribution is rather rare. In some cases, the
normality of the observed characteristic can be artificially created (Nepra$§ and
Plura, 2015) as well as the use of different customer strategies to evaluate process
capability show different results (Nepra§ and Plura, 2016). The International
Organisation for Standardisation has submitted the set of ISO 22514 standards.
The ISO 22514-2 (2017) standard provides a framework for estimating process
performance and process capability for different cases of changes in the
distribution of the quality characteristic of interest over time. These changes are
categorised based on the stability of the process average and the stability of the
process standard deviation in the case of constant, systematic, or random changes.
The ISO 22514 series of standards, as well as the AIAG handbook — Statistical
Process Control (AIAG, 2005) do not provide sufficient guidance to further specify
how to proceed when data normality is not met.

Based on the literature review, no studies focused on listing the causes of non-
normality in relation to process capability analysis were found in the research area.
The studies usually already work with a specific probability distribution as
(Hosseinifard et al., 2009; Senvar and Sennaroglu, 2016; Thavorn and Sudasna-
Na-Ayudthya, 2022; Yang and Zhu, 2018a) for which they present the most
appropriate analysis procedure or present new or modified capability indices
(Alevizakos et al., 2018; Rao et al., 2019; Alevizakos and Koukouvinos, 2020;
Wang et al., 2021) instead of identifying the cause of non-normality and
determining the appropriate capability analysis procedure.

Hundreds of research articles were reviewed by the author as part of the research.
As a complement, the Al tool Consensus (CONSENSUS, 2025) was also used to
examine over 200 million peer-reviewed research articles and extract key findings
from them. It is designed to speed up the search and increase accuracy in finding
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relevant information. The main conclusion of the search is that data non-normality
is often due to process-specific factors such as equipment failures, deviations due
to special causes, measurement errors and the presence of outliers.

2 METHODOLOGY

This study employs a qualitative research methodology based on a systematic
literature review and expert synthesis. Over 200 peer-reviewed articles were
examined using both manual review and the Al tool Consensus, which enabled
efficient extraction of relevant findings from a large corpus of scientific
publications. The goal was to identify, categorise, and analyse the causes of non-
normality in manufacturing process data, particularly in the context of process
capability analysis. The reviewed sources span statistical methods, quality
engineering standards, and practical case studies from industrial environments.
The categorisation of causes was supported by the author's own experience in
manufacturing organisations and illustrated using a structured tool such as the
Ishikawa diagram.

The significant contribution of this research lies in the creation of a comprehensive
framework that systematically maps the causes of non-normality into four distinct
categories: data characteristics, data structure, data collection methodology, and
measurement systems. Unlike previous studies that focus on specific distributions
or propose alternative capability indices, this paper emphasises the importance of
understanding the origin of non-normality before selecting an appropriate
analytical approach. The framework provides practical guidance for quality
professionals and researchers, enabling more accurate and reliable process
capability assessments in real-world manufacturing settings.

3 CAUSES OF FAILURE TO MEET NORMALITY

Data non-normality can be caused by several reasons that fundamentally affect
process capability analysis procedures. Some causes do not prevent the capability
analysis from proceeding, while other causes must be eliminated prior to the
capability analysis because they would lead to unreliable results. It is desirable to
consider the analysis of the causes of non-normality as one of the key phases of
the process capability analysis. A non-normal distribution may not be the result of
special causes, and yet the distribution may have an asymmetric shape. Similarly,
normality does not guarantee the absence of special causes that affect the process.
This means that some identifiable causes can alter the process without breaking
the symmetry or unimodality of the distribution (AIAG, 2005). Similarly,
a statement of non-normality may not be correct, e.g. when using an inappropriate
test.

Understanding the causes of normality violations in manufacturing processes is
essential for accurate quality control and process improvement. Based on an
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analysis of published articles and a systematic examination of the causes of
normality assumption violations in manufacturing process data, four main
categories were identified that reflect different aspects of non-normality. The
different categories and associated causes are illustrated using the Ishikawa
diagram in Figure 1. Each category represents a specific area in which the
normality assumption may be violated.

The categories are defined as follows:

data characteristics,

data structure,

data collection methodology,
measurement systems.

Data
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Figure 1 — Causes leading to violations of normality. Source: Author's own work.

This categorisation provides a comprehensive view of the possible causes of non-
normality and serves as a basis for further analysis. In the next chapter, the
individual causes will be discussed.

3.1 Data characteristics

This category includes causes of non-normality that are based on the natural
feature of the quality characteristic or process under study. These are situations
where the very nature of the data — its physical, chemical or technological
properties — predetermines its distributions. This category is important to
understand that not all data necessarily follow a normal distribution, and that
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statistical analysis must respect the inherent nature of the characteristic being
observed.

3.1.1 Inherent feature of the observed quality characteristics

Non-normality as an inherent property of the characteristic under study means that
the feature does not naturally exhibit a normal distribution. It is often a physical
property of the characteristic; the probability distribution is skewed, and mostly
only one tolerance limit is given. Examples are geometric deviations in shape and
position, which are often used in practice, and which are usually not characterised
by a normal distribution. Real samples may also show higher kurtosis (compared
to the normal distribution).

In the case of non-normality in the data that is due to an inherent feature of the
observed quality characteristic, standard capability analysis procedures for data
that do not follow a normal distribution, namely quantile methods or
transformation techniques, may be applied. The quantile-based approach is
particularly useful for skewed data and is supported by many studies, e.g. (Taib
and Alani, 2021; Karakaya, 2024). The quantile method consists of finding a
suitable probability distribution model and using it to determine the appropriate
quantiles to express the true variability of the characteristic of concern.
Transformation techniques are based on the conversion of the data to new data that
fit a normal distribution. An appropriately chosen transformation function leads to
stabilisation of the variance, better symmetry of the data, and often to a normal
distribution. The effectiveness of these transformations in analysing process
capability for non-normal data is demonstrated, for example, by (Yang et al., 2018;
Yang and Zhu, 2018b; Borucka et al., 2023; Lavra¢ and Turk, 2024).

Comprehensive reviews and comparative studies provide practical guidance on
selecting appropriate methods based on the degree and type of non-normality (e.g.,
skewness, kurtosis). These studies (Tang and Than, 1999; Hosseinifard and
Abbasi, 2012; Taib and Alani, 2021) emphasise that the choice between quantile
methods and transformation techniques should be based on the specific
characteristics of the data and the process under study.

In manufacturing processes, the most common non-normal probability
distributions include log-normal, Weibull, exponential, gamma, and Cauchy
distributions, which better capture the asymmetry of distributions, skewness, or
heavy tails of data typical of real manufacturing processes. Among the frequently
occurring distributions, the Burr distribution can also be included, which is very
flexible and can model a wide range of non-normal distributions of the observed
quality characteristics (Chou and Chen, 2017; Chen, 2018). Selected distributions
and their brief characteristics are listed in Table 1.
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Table 1 — Selected probability distributions and their characteristics. Source:
Author's own work.

Distribution When to Use it Properties

Log-normal Values increase or decrease Asymmetry; long-right tail
multiplicatively (e.g., wear)

Weibull Modelling of degradation, lifetime, | Asymmetry; shape depends on the shape
and material wear parameter

Exponential Modelling of time to first random Right-skewed distribution
event

Gamma Cumulative effects (e.g., error Asymmetry; becomes more symmetric

accumulation, time until n-th event) | with increasing shape parameter

Cauchy Modelling extreme deviations Symmetry; heavy tails, mean or variance
not defined

A special case is when the monitored feature is calculated from other monitored
quality characteristics that do not have a normal distribution. Even if the individual
variables have a normal distribution, their combination (e.g. by calculating a ratio,
difference, product, or other function) may result in a new variable that does not
have a normal distribution. A typical example is the calculation of relative
deviations, ratios or composite indices, where the distribution of the resulting
variable may become asymmetric.

3.1.2 Natural behaviour of the process over a longer period of time

The application of the above-mentioned standard approaches is also possible in
situations where the non-normality is due to the natural behaviour of the process
over a longer period of time.

Standard ISO 22514-2 (2017), for example, describes a C3-type process, which is
characterised by a non-constant average that varies systematically and by a
constant standard deviation. The C3-type process is not in control. In the short run,
the data from such a process do not follow a normal distribution. If the process is
observed over a longer period of time, the suitable model of the distribution is
normal. To analyse the capability of the process, the standard uses the quantile
method. However, if this natural behaviour of the process shows up as a trend in
the control chart, indicating the operation of special causes of variability that result
in the process being out of control, this trend must first be eliminated.

Data non-normality in the long term is not caused only by a change in the mean
value of the monitored quality characteristic. Other dynamic effects that disrupt
the distribution of data may also be the cause. These include, for example, gradual
changes in variance that signal variability in the process without necessarily
shifting the mean value, or long-term systematic changes that appear as a trend.
Periodic fluctuations associated with time or operating mode can lead to cyclical
deviations, while human intervention can result in unobserved changes in process
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settings. Gradual degradation of technical components and environmental
influences beyond the control of the process are further sources of deviation from
normality.

As an example, data from the real production process in which tool wear occurs
are given. The data does not come from a normal distribution. The observed quality
characteristic is the length dimension, specifically the width of the groove for the
seal. The control chart for this characteristic shows a decreasing trend until the tool
change occurs. Here, tool wear is a variable that changes consistently over time.
The operator does not intervene in the process. His only input is the tool change.
The machining tool is a milling cutter whose diameter determines the width of the
groove. The tool life is 340 pieces produced. The data comes from one machine.
Each piece is measured on one CMM machine. The nominal value is 1.975 mm
with a tolerance limit of LSL=1.95 mm; USL=2.00 mm.

The histogram in Figure 2 shows a combination of values from different stages of
tool wear. It may be the result of a linear trend that is not apparent in the histogram
but influences its shape. The trend analysis plot, shown in Figure 3, reveals a
decreasing linear trend. In the case of choosing the time series analysis, the variable
and model type were first selected, and the residuals were used in the control chart.
This is a regression analysis method to remove the trend and obtain residuals that
are trend-free. The obtained residuals were used to assess the stability of the
process.

Histogram of values from the real production process

Frequency

1,965 1,966 1,967 1,968 1,969 1,970

Figure 2 — Histogram of the real data. Source: Author's own work.
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Trend analysis plot for the real data
Linear Trend Model
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Figure 3 — Trend analysis plot for the real data. Source: Author's own work.

The process capability analysis uses the originally measured values because the
specification limits refer to the real values of the quality characteristic, not to the
residuals. The customer or technical documentation expects the output to be within
the tolerance limits regardless of whether there is a trend in the data. Residuals are
useful for assessing whether the process is in control but cannot be used directly
to calculate capability indices. For the purpose of process capability analysis, non-
normally distributed data were transformed to normally distributed data using the
Johnson transformation. The normality of the transformed data was verified using
Anderson-Darling test (p-value 0.998). The process was assessed as capable as the
capability indices are greater than 1.33.

The procedure based on the use of regression to adjust and remove systematic
shifts from process data and subsequent verification of whether the process is
under control using residuals is supported by Leone et al. (2011) and Alexopoulos
et al. (2023).

Tool wear in manufacturing processes is widely recognised by research studies as
a significant cause of disruption to normality, which:

e causes non-standard process signals and affects the probability distribution
(Li et al., 2019; Lee et al., 2019; Gai et al., 2022; Cheng et al., 2023;
Herrera-Granados et al., 2024; Huang et al., 2024),

e degrades the quality of outputs and leads to process failures (Hao et al.,
2017; Lee et al., 2019; Herrera-Granados et al., 2024; Cheng et al., 2023),

e requires advanced monitoring for early detection (Yan et al., 2021; Yang et
al., 2022; Herrera-Granados et al., 2024).
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Across the studies, tool wear is universally regarded as a natural, expected feature
of machining processes. Recent reviews and studies focus on understanding,
monitoring, and predicting its progression to minimise negative impacts on quality
and productivity. As Munaro et al. (2023) point out, current studies are now
working on updates or extensions to process capability analysis or frameworks for
tool wear scenarios.

3.2 Data structure

Data structure refers to the way data is organised, grouped, or stored within
a dataset. This category reflects the internal organisation of the dataset, which may
be influenced, for example, by a combination of different data sources, time
periods, production batches, or other segmentation criteria. The resulting structure
can substantially affect the statistical properties of the data, including distribution.
The nature of this category is that the non-normality arises as a result of the way
the data are grouped and presented, not because of the content of the data itself.

3.2.1 Data inhomogeneity and outliers

Inhomogeneity can be caused by data from different sources or by data that are
collected at different points in time or include different populations. Data
homogeneity refers to data with similar statistical properties, i.e. the mean and
variance do not differ significantly between subgroups, and the data have a similar
model of distribution. Homogeneity and normality are quite different properties.
Data can be homogeneous and exhibit normal or non-normal distributions, just as
data can be inhomogeneous and come from different distributions.

The solution is to use advanced probability models that can account for
inhomogeneity, such as mixed models. One can also use a stratification, i.e.
splitting the data into homogeneous subgroups and then analysing each group of
data separately, or use conventional methods (quantile methods, transformation
techniques) with outlying observations being identified and removed.
Stratification can be performed according to different criteria depending on the
nature of the data and the specifics of the production process. Suitable criteria may
be period, machine or production equipment, operator, batch, production run, or
material type. A major advantage of data stratification is that it provides more
detailed information about process behaviour under different conditions. The
process should then be proven to be capable under all these conditions.
A comparison of the two approaches is shown in Table 2.

Table 2 — Comparison of the properties of the stratification method and the mixed
model. Source: Author's own work.

Method Stratification Mixed model
Advantages | Simple and intuitive analysis, easy to Taking multiple factors into account
use in exploratory data analysis simultaneously
No complex modelling required Allowing modelling of random effects
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Method Stratification Mixed model

Obtaining more detailed information Maintaining overall data size
about the behaviour of the process under
various conditions

Disadvantages | Risk of information loss when data is Need to correctly specify the
split structure/setting of the model
Difficult to compare multiple factors at | Higher demands on knowledge and
once interpretation
Interactions between factors are not May be sensitive to outliers

taken into account, not suitable for more

complex data structures May not always correspond to the

monitored data

A special case of inhomogeneity is for outliers that do not fit the probabilistic
behaviour of the dataset under investigation. Graphical methods for outlier
detection are not much affected by the division into parametric and non-parametric
methods. Most tests are flexible enough to be applied to different types of data,
regardless of their distribution. The statistical power of a test is the ability of the
test to detect the true effect, if any. For example, outlying observations can
significantly reduce the statistical power of a test (Cavus et al., 2023) as they
increase the variability of the data, which may cause the test to fail to detect this
true effect. If the data does not come from a normal distribution, a non-parametric
test should be used. For mixed distributions (combination of two or more
distributions) reported by Ag-Yi and Aidoo (2022), the Jarque-Bara test is
appropriate.

If it is suspected that the data do not come from a normal distribution, it is possible
to use a so-called modified Z-score, which is less sensitive to outliers. The median
and median absolute deviation (MAD) are used instead of the mean and standard
deviation. |Modified Z| values > 3.5 are considered outliers (Mandi¢-Rajcevi¢ and
Colosio, 2019; Bae and Ji, 2019). The modified Z-score is calculated according to
the relation:
0.6745 (x; —
Zmodified = Mz‘(lDl ) (1)

where X is median, 0.6745 is a constant ensuring comparability with classical Z-
score for normal distribution, MAD is the median absolute deviation, which is
calculated MAD = X (x; — X), where x; is a specific value.

Z-scores and modified Z-scores cannot be considered statistical hypothesis tests as
they do not have a defined Ho and Hi, do not return a p-value or make decisions
based on a predetermined significance level, but can be part of hypothesis testing
and a useful tool for outlier decision making.

For a data that does not come from a normal distribution, a graphical method
supplemented by quantification using modified Z-scores is the appropriate
procedure. Similarly, it is possible to try to transform the data to approximate
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a normal distribution and then apply the procedure to the normal data as part of the
process capability analysis.

The identification of outliers must be followed by an analysis of their causes.
Outlying observations can only be excluded from the dataset if they are proven to
be due measurement of recording error, and also if an external effect outside the
standard process is proven, e.g. machine failure.

3.2.2 Higher frequency of values near the limit value

Similarly, the capability analysis can be continued if there are many values close
to the limit value, if this is a property inherent in the process. The non-normal
distribution will be known, and the behaviour of the process will be predictable. A
higher concentration of values around the lower or upper tolerance limit may be
due to the following - production process is continuously adjusted (i.e. maintained
within specified tolerances), manufacturing process with one-sided control or a
process with a shifted mean, control of strict quality requirements, repeated
verification of the monitored characteristic after a certain period of use (e.g. wear
phase), measurement system set to acceptability limits or use of adaptive control
systems.

Adjusting processes to those values cluster near specification limits or the target
value is a well-known cause of non-normality in production process data. This
often leads to skewed or bimodal distributions rather than a classic normal curve.
Although it is well known in quality engineering that frequent adjustments of the
process towards the limits can cause non-normal data distributions, no research
papers have been found that directly study or model this effect. Even the search
terms like "process adjustment induced non-normality" or "clustering near
specification limits," do not return any relevant results. However, studies can be
found that focus on the optimal setting of tolerance limits (Y1 et al., 2025; Peng
and Han, 2024).

As an example, the model of log-normal distribution in Figure 4 is significantly
right-skewed, most values are very close to the lower tolerance in this case. High
values have a lower frequency. Such a process is one-sided adjustable, with
adjustment to the lower tolerance. This type of distribution can occur if the
operator or automated system continually adjusts the process to keep the output as
close to the lower tolerance as possible, or if the process is naturally shifted
towards the lower tolerance. In the case where the tolerance limit is not equal to
zero, there is a high risk of non-conforming products occurring below the
tolerance.

A typical characteristic monitored in a production processes may be the thickness
of the coating layer, where the operator or system can adjust the equipment to make
the layers as thin as possible but still within tolerance. Another example might be
the length of the overlap or clearance, such as the gap between parts, where the
process is set up to ensure that the parts fit tightly.
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Figure 4 — Histogram for log-normal distribution. Source: Author's own work.

In this case, it is necessary to examine the reasons for the one-sided adjustment or
to move the process further away from the tolerance limit.

3.3 Data collection methodology

A data collection methodology is a set of rules, procedures and techniques that
determine how data is collected from a process. This category focuses on the
temporal, spatial and organisational aspects of data collection that may affect the
representativeness of the data. The nature of this category is that non-normality
may be the result of an inappropriate choice of methodology that does not match
the dynamics of the process or the nature of the characteristic being observed. The
methodology of data collection is crucial for the validity of the statistical analysis
because even a well-functioning process can be misinterpreted if data are collected
in an inappropriate way.

3.3.1 Inappropriate method of data collection

Inappropriate data collection refers to situations where the method, time, place, or
conditions of data collection (or its evaluation) do not correspond to the reality of
the process, leading to distortion of the dataset. Non-normality caused by
inappropriate collection can arise during the process phase, during the data
collection itself, or after sorting inspection. These phases with the associated
causes of non-normality are shown in Table 3.

Table 3 — Phases of inappropriate data collection and related causes of non-
normality. Source: Author's own work.

Process phase Cause of non-normality

Production process collecting data only from a selected part of the process
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Process phase Cause of non-normality

collecting data after intervening in the process

an unsuitable data collection interval

manual sample selection

Data collection preference of values close to the mean

removal of extreme values

data after sorting inspection

Post-sorting inspection phase
recording only compliant data (OK products)

The production process phase relates to when and where data is collected within
the production process. The data collection phase relates to the methods of
selecting or manipulating data, regardless of the production process itself. When
collecting data only from a selected part of the process, measurements are taken
only at the beginning of a shift or by only one operator. This results in an
unrepresentative sample, often with lower variability. Data collection after
intervention in the process refers to a situation after machine adjustment or repair.
The result then does not reflect the current state of the process. In the case of an
inappropriately chosen data collection interval, a non-normality can arise as a
result of an inappropriately chosen data collection interval, for example, when, in
the case of process periodicity, this interval does not provide information about all
process states.

Data after sorting inspection describes a situation where data is collected only after
non-compliant products have been discarded. In this case, the distribution will be
artificially narrowed with lower dispersion, and normality may no longer be
satisfied. When only compliant products are recorded, non-compliant products are
not recorded, and part of the distribution is missing from the data file.

The data collection phase is given as an example. This one may reduce the
variability of the data or lead to systematic errors if some products are discarded
regularly or preferred for certain reasons.

Based on the available research, there are not direct studies that specifically
investigate how (sorting) products transforms an originally (normal) distribution
into a non-normal one in measurement data. Rabatel et al. (2020) discuss how
normalization and variable sorting can improve the robustness and interpretation
of multivariate measurement data. Velyka et al. (2021) model sorting and
distribution processes in a production environment and analyses the impact of
different distribution laws (normal, exponential) on simulation outcomes. The
remaining papers focus on sorting algorithms, and their impact on data processing
or classification performance, but do not address the specific scenario of sorting
products before measurement and its effect on data normality (Jain et al., 2018;
Liao et al., 2024; Subramaniam and Chandra Umakantham, 2025).
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As an example, data simulation was performed. The histogram for the original data
is shown in Figure 5. In contrast, the histogram of data after sorting inspection in
Fig. 6 shows the situation how this product sorting before measurement affects the
distribution of the data and causes deviations from the normal distribution. This
histogram represents the data after sorting inspection, where edge values have been
systematically removed, here all values below 40 and above 60. Such interventions
in the form of cut-off values lead to an artificial narrowing of the variance but do
not reflect the true variability of the process. While all data (original) come from
a normal distribution, the normality is violated for data after product sorting.

Histogram for data before product sorting

Mormal distribution

Mean 4359
StDev 9310
M 200

30

Figure 5 — Histogram of data before product sorting. Source: Author's own

work.
Histogram for data after product sorting
Removal of edge values
40
30
=
£
3
g’ 20
s
10
1]
20 30 70 80
X

Figure 6 — Histogram of data after product sorting. Source: Author's own work.
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Distortion of distribution can also occur when some values are preferred, e.g.
values close to the mean. There may be a significant concentration around the
middle, with the outlying values significantly less represented or completely
absent. This type of distortion can lead to the mistaken judgment that the process
seems to be stable and has low variability, when in fact this is not the case.

The following is recommended to prevent systematic distortion of data:

e introduction of random or systematic sampling helps to ensure the
representativeness of the data and eliminate human judgement,

e replacing the human factor with automated measuring systems that record
data without operator intervention,

e introduction of blind sorting or measurements where the identification of
the sample is unknown to avoid biasing the results,

e keeping a record of who performed the sorting and how, including time and
conditions, which can help to retrospectively identify sources of distortion.

3.3.2 Sample size

In the context of non-normality, it is also necessary to mention the issue of the
sample. For the process capability analysis, at least 125 values (25 subgroups of
size 5) are required. There may be a different size of subgroups, but the total
number of values should not be less than 125 (AIAG, 2005). If the sample size is
small, the probability of drawing an incorrect conclusion about the suitable model
of distribution increases. The non-normality may be due to the fact that in such an
under-represented sample, the estimates of the parameters of the distribution are
not accurate, and the statistical tests show less power by making it less likely that
the true effect will be detected.

Important criteria in selecting a test are the number of values in the dataset (Demir,
2022), the power of the test, and the sensitivity to deviations from normality. For
example, for small samples (n<50) is recommended the Shapiro-Wilk test and for
larger samples (n>50) the D'Agostino-Pearson test (Avram and Marusteri, 2022).
Research shows that the Anderson-Darling test is flexible and can be used for a
wide range of sample sizes. From 30 values and above, it is considered highly
suitable. This test is also applicable to small sample sizes. Exact or simulated
critical values are available for small sample sizes, and several studies provide
tables or formulas for these cases (Kitani and Murakami, 2024). However, the
statistical power of the test - its ability to detect deviations from the hypothesized
distribution - is generally lower with very small samples, meaning the test may not
reliably identify non-normality or other distributional differences when N is small
(Jantschi and Bolboaca, 2018). Despite this limitation, Razali and Wah (2011) state
that the Anderson-Darling test is still considered one of the more powerful
goodness-of-fit tests for small samples compared to alternatives like the
Kolmogorov-Smirnov test.
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As an example of changing the model of distribution, a log-normal distribution
with parameters (0.8;1) was simulated and tested. Anderson-Darling test of
goodness of fit with normal and log-normal distributions was performed. This
change at different samples sizes is shown in Table 4. Even if the data does not
come from a normal distribution, with a small sample size, the normality test may
conclude that normality is achieved due to its low power.

Table 4 — Anderson-Darling test result for simulated data from log-normal
distribution (0.8, 1). Source: Author's own work.

Sample p-value (N) Distribution p-value (log-N) Distribution
size
100 <0.005 non-normal 0.076 log-normal
50 <0.005 non-normal 0.765 log-normal
30 <0.005 non-normal 0.697 log-normal
20 <0.005 non-normal 0.694 log-normal
10 0.059 normal 0.200 log-normal

The same results (normality for a sample size of 10 values) were also obtained for
the log-normal distribution with parameters (0;1), (1;0.5), (1;1) and (2;0.5).

These simulations are intended to serve as an illustration of the behaviour of
selected normality tests as a function of sample size. The results of this simulation
do not aspire to be generalized to other data, given that the sensitiveness of the
various tests is already well described in the literature.

A conclusion about the suitable model of distribution should never be based on
only one statistical test. A combination of tests, graphical visualizations, and an
understanding of context are key to correctly interpreting data. It is important not
to automatically assume normality for manufacturing process data. It is appropriate
to combine tests with visual methods. If the test result is ambiguous or a small
sample is available, it is appropriate to consider using non-parametric methods.

3.4 Measurement systems

The measurement systems category of causes of normality violation deals with the
technical, environmental and human aspects of the measurement process. The
nature of this category is that non-normality may be caused by the characteristics
of the measurement equipment, the measurement conditions or the way the
measurement is performed. This category therefore requires systematic monitoring
and validation of measurement systems to ensure the consistency and accuracy of
the data obtained. The category of measurement systems includes these potential
causes of data non-normality:

e technical characteristics of the measuring equipment,
e changes in measurement conditions,
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e measurement errors caused by human factors.

Very few studies have been found that examine how data non-normality can arise
with the contribution of the measurement system and how this affects further
analyses. For example, Cabral et al. (2020) and Arellano-Valle et al. (2020) present
advanced models for modelling measurement errors with non-normal
distributions. Spicker et al. (2021) introduce a nonparametric method to correct for
measurement error without assuming normality.

Data non-normality can be caused by several reasons. Most of these causes can be
detected and subsequently eliminated during the measurement system analysis
(MSA) that precedes the statistical process control assessment, normality
verification, and process capability analysis.

3.4.1 Technical characteristics of the measuring equipment
The causes associated with this area are defined as follows:

combination of two or more measuring systems,
limited resolution of the measuring system,
wear and tear of the measuring system,
measurement equipment failures,

incorrect calibration of the measuring system,

- rounding off.

A combination of two or more measuring systems

In a production process, the same characteristic can be measured by two different
devices (e.g. newer and older versions) that have different characteristics, e.g.
accuracy, calibration, etc. Measurements may be taken at different workstations or
on different shifts. The result is a mixture of two distributions.

Recommendations: standardisation of measuring equipment (use of one or more
of the same type), introduction of a uniform measurement procedure, regular
calibration and comparison of results between measuring equipment, €.g. cross-
check method; keeping records of which equipment has been used for a given
measurement.

Limited resolution of the measuring system

The measuring equipment used has a low resolution, e.g. it only measures whole
units. The cause may be, for example, an analogue display or a digital step. The
consequence is loss of detail, artificial grouping of values and reduced sensitivity.

Recommendation: using a measuring device with higher resolution (e.g. instead of
rounding to 0.5, measure to 0.1 or 0.01), calibrate the measuring device and
thereby ensure that the rounding is consistent and predictable. If possible, a good
approach is to keep the unrounded values.

The limited resolution can be also compensated statistically. It depends on what
type of analysis the data is intended for. If it is known that the values have been
rounded, jittering, i.e. adding a small amount of random noise, can be used. The
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use of this approach is mainly used to improve the analysis or visualization of the
data. The addition of random noise helps to distinguish individual values that
would otherwise be "inflated" to the same value due to rounding. Jittering avoids
overlapping points and allows a better perception of the distribution of the data,
but care must be taken to ensure that the added noise is small enough not to affect
the interpretation of the data itself (Ropinski et al., 2021).

Wear and tear of the measuring system

Over time, wear and tear on the measuring equipment, e.g. its mechanical parts,
leads to drift in the results.

Recommendations: establish a maintenance and replacement plan for equipment,
perform regular calibration, monitor trends in measurements, use control samples
to verify accuracy of measurements

Measurement equipment failures

In a production environment, sudden failures and interruptions can occur for
various reasons, causing extreme values or random errors. Possible causes include
sensor failures, loss of communication between the measuring device and the data
acquisition system, faulty software, mechanical damage or manual intervention in
the measurement.

Recommendations: introduction of automatic data consistency checking, regular
inspection and diagnostics of the equipment, recording and analysis of error
messages; introduction of alarms if the value exceeds the physically possible
range; identification and analysis of outliers and their removal if they are
confirmed as errors.

Incorrect calibration of the measurement system

Incorrect calibration leads to distorted data. The causes of incorrect calibration can
be various, e.g. use of a wrong reference standard, mixing up of units, incorrect
setting of the measuring range, change of software without subsequent
recalibration, incorrect calculation of the correction factor or its absence.

Recommendations: establish a calibration plan, use calibration standards and
reference materials, perform check measurements on known samples after each
calibration, document and track calibration results, monitor long-term trends in
measurements.

Rounding-off

Rounding the values not only causes a loss of resolution but also creates a higher
frequency of occurrence of certain values, and the original continuous variable
starts to behave like a discrete variable. By rounding, the data loses its natural
variability.

Recommendations: check measurement device settings (increase resolution,
disable automatic rounding), record original unrounded values, take rounding into
account when interpreting results, use measurement device with higher accuracy.
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3.4.2 Change of measurement conditions

This situation is typically characterized by a shift of part of the data, which causes
asymmetry. Measurements can take place under different conditions, e.g. different
temperatures, humidity, vibrations, etc. Measurements can be performed by
different operators or on different shifts. Other variations may include the
influence of external factors (unstable power supply, electromagnetic interference,
etc.) or insufficient stabilization of the measured component, e.g. after heating.

Recommendations: introduction of environmental control (stable conditions),
measurement and recording of conditions at each measurement, analysis of the
effect of conditions on measurements, introduction of control samples (reference
part measurements).

3.4.3 Measurement errors caused by human factors

These errors most often occur when an operator makes a mistake when reading
a value or incorrectly records a measured value. Human error can be caused by
a variety of factors - fatigue, inattention, stress, lack of training, improper use of
measurement equipment, misinterpretation of results, or subjective estimation
instead of accurate measurement. These errors are often unpredictable, which is
why it is important to introduce standardised procedures, use automated systems
and carry out regular training.

Recommendations: implement training and standard operating procedures, use
automated measurements, perform data entry checks.

4 DISCUSSION ON PROCESS CAPABILITY ANALYSIS

The different categories of causes of data non-normality, analysed in the previous
chapter, also differ in the stage at which process capability analysis can be
undertaken. In cases where the non-normality is due to an inherent property of the
observed characteristics or process under study, the process capability analysis can
proceed by transforming the data to a normal distribution before calculating the
capability indices, or by applying modified quantile-based capability indices. Non-
normality due to data structure usually indicates that the data are not homogeneous
or representative. In such cases, it is not appropriate to proceed with the process
capability analysis without first modifying the dataset. If outliers are identified,
they should be analyses and excluded from the dataset only if they are clear errors.
If the non-normality is due to an inappropriate data collection methodology, the
data collection must be repeated. Only after the methodological issues have been
corrected and a new dataset has been obtained can a valid process capability
analysis be carried out. The normality related to the measurement system
deficiencies should be detected already in the phase preceding the process
capability analysis, namely the measurement system analysis. If the MSA is
performed correctly, most of the reported causes in this category should be
identified.
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S CONCLUSION

Violation of the data normality assumption is a significant problem in process
capability analysis that can fundamentally affect the accuracy and objectivity of
the results. This paper has systematically identified and analysed the main causes
of data non-normality in the context of manufacturing processes, highlighting that
non-normality is not always the result of random or special causes, but often arises
from natural process behaviour, characteristics of the measured variables or
deficiencies in the measurement systems.

Research has shown that the causes of non-normality can be divided into several
categories. Each of these categories has specific implications for the suitable model
of distribution and requires a different approach to analysing the capability. For
example, in the case of an intrinsic property of the observed quality characteristic,
quantile methods or transformation techniques can be applied, whereas for non-
normality caused by product sorting, it is necessary to first remove systematic bias
from the data.

Particular attention was paid to the effect of instrument wear, which proved to be
a significant factor disturbing the normality of the data. The results of the literature
search confirm that wear leads to systematic trends that need to be identified prior
to the capability analysis itself. It has also been shown that the causes of non-
normality related to higher frequency of values around the limit value and data
related to product sorting before and after measurement have not received
sufficient attention in research articles.

Another important finding is the effect of sample size on the results of normality
tests. Small samples can lead to incorrect conclusions about normality, whereas
larger samples have higher test power and allow more accurate identification of
non-normality. Therefore, it is essential to combine statistical tests with graphical
methods and always consider the context of the data.

One of the main contributions of this study is the systematic mapping and
categorisation of the causes of data non-normality in manufacturing processes,
which have not been comprehensively described in the literature in one place.
While most available studies focus on specific types of distributions or the design
of alternative capability indices, this paper provides a comprehensive overview of
the causes that lead to violations of the normality assumption, including their
practical manifestations, implications, and recommended solutions. This synthesis
is based not only on an extensive search of research sources, but also on the
author's practical experience in manufacturing organisations. The result is a clear
framework that can serve as a guide for quality professionals in identifying and
correcting non-normality in data.

In conclusion, non-normality cause analysis should be an integral part of the
capability analysis process, or a phase that should precede the process capability
analysis. Only a thorough understanding of the origin of the non-normality allows
to choose an appropriate analytical approach and to ensure reliable results.
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Determining the cause of the non-normality is the key information for further
proceeding with the process capability analysis. Only in case where the non-
normality is an inherent feature of the observed quality characteristic or process
being analysed can it be continued. In other cases, the causes of the non-normality
need to be removed and new data needs to be collected.

This paper provides a practical framework for identifying and analysing the causes
of non-normality that can be used in both academic research and industrial
practice. Future research should focus on developing methods for their automatic
detection and correction.
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