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ABSTRACT 

Purpose: In process capability analysis, violation of the normality assumption is 

considered a non-standard situation. This paper defines and categorises causes of 

non-normality in manufacturing processes, which are essential for quality 

planning, control, and selecting appropriate analytical procedures. Based on a 

literature review and systematic investigation, four main categories have been 

identified. Each category is analysed in detail with practical implications for 

capability analysis. The paper provides a comprehensive framework for 

identifying non-normality causes and guiding further analysis steps. 

Methodology/Approach: Systematic literature review and expert synthesis of 

causes, supported by practical examples and categorisation into four key areas 

Findings: four categories of non-normality causes identified; each requires a 

specific analytical approach before capability analysis can proceed 

Research Limitation/Implication: Focuses on categorisation; future work should 

develop automated detection methods and validate solutions across diverse 

industries 

Originality/Value of paper: Provides first comprehensive framework for 

identifying non-normality causes in manufacturing, bridging theory and industrial 

practice 

 

Category: Technical paper 

Keywords: non-normality of data; causes of non-normality, process capability 

analysis  

Research Areas: Quality Engineering 
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1 INTRODUCTION  

Evaluation of the capability of manufacturing processes is an integral part of 

product quality planning and management. Process capability analysis provides 

key information on whether the process can produce products of the required 

quality. The basic prerequisites for assessing process capability are the process in 

control and the normality of the observed quality characteristic. Standard 

capability indices assume normality and are used to assess process capability. 

In the practical application, particularly in relation to the fulfilment of the required 

prerequisites, a number of errors can be encountered in the process capability 

analysis – data normality is not verified, process capability is evaluated even if 

normality is not met, an inappropriate statistical test is chosen to assess normality, 

the interpretation of the results is limited to the achievement or non-achievement 

of the desired valued of the selected capability index, etc. In case of non-normality, 

users usually do not know how to interpret and work with other probability 

distributions.  

The behaviour of real production processes commonly shows violations of basic 

assumptions for process capability analysis. The situation where the process is in 

control and data come from a normal distribution is rather rare. In some cases, the 

normality of the observed characteristic can be artificially created (Nepraš and 

Plura, 2015) as well as the use of different customer strategies to evaluate process 

capability show different results (Nepraš and Plura, 2016). The International 

Organisation for Standardisation has submitted the set of ISO 22514 standards. 

The ISO 22514-2 (2017) standard provides a framework for estimating process 

performance and process capability for different cases of changes in the 

distribution of the quality characteristic of interest over time. These changes are 

categorised based on the stability of the process average and the stability of the 

process standard deviation in the case of constant, systematic, or random changes. 

The ISO 22514 series of standards, as well as the AIAG handbook – Statistical 

Process Control (AIAG, 2005) do not provide sufficient guidance to further specify 

how to proceed when data normality is not met.  

Based on the literature review, no studies focused on listing the causes of non-

normality in relation to process capability analysis were found in the research area. 

The studies usually already work with a specific probability distribution as 

(Hosseinifard et al., 2009; Senvar and Sennaroglu, 2016; Thavorn and Sudasna-

Na-Ayudthya, 2022; Yang and Zhu, 2018a) for which they present the most 

appropriate analysis procedure or present new or modified capability indices 

(Alevizakos et al., 2018; Rao et al., 2019; Alevizakos and Koukouvinos, 2020; 

Wang et al., 2021) instead of identifying the cause of non-normality and 

determining the appropriate capability analysis procedure. 

Hundreds of research articles were reviewed by the author as part of the research. 

As a complement, the AI tool Consensus (CONSENSUS, 2025) was also used to 

examine over 200 million peer-reviewed research articles and extract key findings 

from them. It is designed to speed up the search and increase accuracy in finding 



QUALITY INNOVATION PROSPERITY  29/3 – 2025  

 

ISSN 1338-984X (online) 

114 

relevant information. The main conclusion of the search is that data non-normality 

is often due to process-specific factors such as equipment failures, deviations due 

to special causes, measurement errors and the presence of outliers. 

2 METHODOLOGY 

This study employs a qualitative research methodology based on a systematic 

literature review and expert synthesis. Over 200 peer-reviewed articles were 

examined using both manual review and the AI tool Consensus, which enabled 

efficient extraction of relevant findings from a large corpus of scientific 

publications. The goal was to identify, categorise, and analyse the causes of non-

normality in manufacturing process data, particularly in the context of process 

capability analysis. The reviewed sources span statistical methods, quality 

engineering standards, and practical case studies from industrial environments. 

The categorisation of causes was supported by the author's own experience in 

manufacturing organisations and illustrated using a structured tool such as the 

Ishikawa diagram. 

The significant contribution of this research lies in the creation of a comprehensive 

framework that systematically maps the causes of non-normality into four distinct 

categories: data characteristics, data structure, data collection methodology, and 

measurement systems. Unlike previous studies that focus on specific distributions 

or propose alternative capability indices, this paper emphasises the importance of 

understanding the origin of non-normality before selecting an appropriate 

analytical approach. The framework provides practical guidance for quality 

professionals and researchers, enabling more accurate and reliable process 

capability assessments in real-world manufacturing settings. 

3 CAUSES OF FAILURE TO MEET NORMALITY 

Data non-normality can be caused by several reasons that fundamentally affect 

process capability analysis procedures. Some causes do not prevent the capability 

analysis from proceeding, while other causes must be eliminated prior to the 

capability analysis because they would lead to unreliable results. It is desirable to 

consider the analysis of the causes of non-normality as one of the key phases of 

the process capability analysis. A non-normal distribution may not be the result of 

special causes, and yet the distribution may have an asymmetric shape. Similarly, 

normality does not guarantee the absence of special causes that affect the process. 

This means that some identifiable causes can alter the process without breaking 

the symmetry or unimodality of the distribution (AIAG, 2005). Similarly, 

a statement of non-normality may not be correct, e.g. when using an inappropriate 

test. 

Understanding the causes of normality violations in manufacturing processes is 

essential for accurate quality control and process improvement. Based on an 
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analysis of published articles and a systematic examination of the causes of 

normality assumption violations in manufacturing process data, four main 

categories were identified that reflect different aspects of non-normality. The 

different categories and associated causes are illustrated using the Ishikawa 

diagram in Figure 1.  Each category represents a specific area in which the 

normality assumption may be violated.  

The categories are defined as follows: 

• data characteristics, 

• data structure, 

• data collection methodology, 

• measurement systems. 

 

Figure 1 – Causes leading to violations of normality. Source: Author's own work. 

This categorisation provides a comprehensive view of the possible causes of non-

normality and serves as a basis for further analysis. In the next chapter, the 

individual causes will be discussed. 

3.1 Data characteristics 

This category includes causes of non-normality that are based on the natural 

feature of the quality characteristic or process under study. These are situations 

where the very nature of the data – its physical, chemical or technological 

properties – predetermines its distributions. This category is important to 

understand that not all data necessarily follow a normal distribution, and that 
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statistical analysis must respect the inherent nature of the characteristic being 

observed.  

3.1.1 Inherent feature of the observed quality characteristics 

Non-normality as an inherent property of the characteristic under study means that 

the feature does not naturally exhibit a normal distribution. It is often a physical 

property of the characteristic; the probability distribution is skewed, and mostly 

only one tolerance limit is given. Examples are geometric deviations in shape and 

position, which are often used in practice, and which are usually not characterised 

by a normal distribution. Real samples may also show higher kurtosis (compared 

to the normal distribution).  

In the case of non-normality in the data that is due to an inherent feature of the 

observed quality characteristic, standard capability analysis procedures for data 

that do not follow a normal distribution, namely quantile methods or 

transformation techniques, may be applied. The quantile-based approach is 

particularly useful for skewed data and is supported by many studies, e.g. (Taib 

and Alani, 2021; Karakaya, 2024). The quantile method consists of finding a 

suitable probability distribution model and using it to determine the appropriate 

quantiles to express the true variability of the characteristic of concern. 

Transformation techniques are based on the conversion of the data to new data that 

fit a normal distribution. An appropriately chosen transformation function leads to 

stabilisation of the variance, better symmetry of the data, and often to a normal 

distribution. The effectiveness of these transformations in analysing process 

capability for non-normal data is demonstrated, for example, by (Yang et al., 2018; 

Yang and Zhu, 2018b; Borucka et al., 2023; Lavrač and Turk, 2024). 

Comprehensive reviews and comparative studies provide practical guidance on 

selecting appropriate methods based on the degree and type of non-normality (e.g., 

skewness, kurtosis). These studies (Tang and Than, 1999; Hosseinifard and 

Abbasi, 2012; Taib and Alani, 2021) emphasise that the choice between quantile 

methods and transformation techniques should be based on the specific 

characteristics of the data and the process under study. 

In manufacturing processes, the most common non-normal probability 

distributions include log-normal, Weibull, exponential, gamma, and Cauchy 

distributions, which better capture the asymmetry of distributions, skewness, or 

heavy tails of data typical of real manufacturing processes. Among the frequently 

occurring distributions, the Burr distribution can also be included, which is very 

flexible and can model a wide range of non-normal distributions of the observed 

quality characteristics (Chou and Chen, 2017; Chen, 2018). Selected distributions 

and their brief characteristics are listed in Table 1. 
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Table 1 – Selected probability distributions and their characteristics. Source: 

Author's own work. 

Distribution When to Use it Properties 

Log-normal Values increase or decrease 

multiplicatively (e.g., wear) 

Asymmetry; long-right tail 

Weibull Modelling of degradation, lifetime, 

and material wear 

Asymmetry; shape depends on the shape 

parameter 

Exponential Modelling of time to first random 

event 

Right-skewed distribution 

Gamma Cumulative effects (e.g., error 

accumulation, time until n-th event) 

Asymmetry; becomes more symmetric 

with increasing shape parameter 

Cauchy Modelling extreme deviations Symmetry; heavy tails, mean or variance 

not defined 

 

A special case is when the monitored feature is calculated from other monitored 

quality characteristics that do not have a normal distribution. Even if the individual 

variables have a normal distribution, their combination (e.g. by calculating a ratio, 

difference, product, or other function) may result in a new variable that does not 

have a normal distribution. A typical example is the calculation of relative 

deviations, ratios or composite indices, where the distribution of the resulting 

variable may become asymmetric. 

 

3.1.2 Natural behaviour of the process over a longer period of time 

The application of the above-mentioned standard approaches is also possible in 

situations where the non-normality is due to the natural behaviour of the process 

over a longer period of time.  

Standard ISO 22514-2 (2017), for example, describes a C3-type process, which is 

characterised by a non-constant average that varies systematically and by a 

constant standard deviation. The C3-type process is not in control. In the short run, 

the data from such a process do not follow a normal distribution. If the process is 

observed over a longer period of time, the suitable model of the distribution is 

normal. To analyse the capability of the process, the standard uses the quantile 

method.  However, if this natural behaviour of the process shows up as a trend in 

the control chart, indicating the operation of special causes of variability that result 

in the process being out of control, this trend must first be eliminated.  

Data non-normality in the long term is not caused only by a change in the mean 

value of the monitored quality characteristic. Other dynamic effects that disrupt 

the distribution of data may also be the cause. These include, for example, gradual 

changes in variance that signal variability in the process without necessarily 

shifting the mean value, or long-term systematic changes that appear as a trend. 

Periodic fluctuations associated with time or operating mode can lead to cyclical 

deviations, while human intervention can result in unobserved changes in process 
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settings. Gradual degradation of technical components and environmental 

influences beyond the control of the process are further sources of deviation from 

normality.  

As an example, data from the real production process in which tool wear occurs 

are given. The data does not come from a normal distribution. The observed quality 

characteristic is the length dimension, specifically the width of the groove for the 

seal. The control chart for this characteristic shows a decreasing trend until the tool 

change occurs. Here, tool wear is a variable that changes consistently over time. 

The operator does not intervene in the process. His only input is the tool change. 

The machining tool is a milling cutter whose diameter determines the width of the 

groove. The tool life is 340 pieces produced. The data comes from one machine. 

Each piece is measured on one CMM machine. The nominal value is 1.975 mm 

with a tolerance limit of LSL=1.95 mm; USL=2.00 mm. 

The histogram in Figure 2 shows a combination of values from different stages of 

tool wear. It may be the result of a linear trend that is not apparent in the histogram 

but influences its shape. The trend analysis plot, shown in Figure 3, reveals a 

decreasing linear trend. In the case of choosing the time series analysis, the variable 

and model type were first selected, and the residuals were used in the control chart. 

This is a regression analysis method to remove the trend and obtain residuals that 

are trend-free. The obtained residuals were used to assess the stability of the 

process.  

 

Figure 2 – Histogram of the real data. Source: Author's own work. 
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Figure 3 – Trend analysis plot for the real data. Source: Author's own work. 

The process capability analysis uses the originally measured values because the 

specification limits refer to the real values of the quality characteristic, not to the 

residuals. The customer or technical documentation expects the output to be within 

the tolerance limits regardless of whether there is a trend in the data. Residuals are 

useful for assessing whether the process is in control but cannot be used directly 

to calculate capability indices. For the purpose of process capability analysis, non-

normally distributed data were transformed to normally distributed data using the 

Johnson transformation. The normality of the transformed data was verified using 

Anderson-Darling test (p-value 0.998). The process was assessed as capable as the 

capability indices are greater than 1.33. 

The procedure based on the use of regression to adjust and remove systematic 

shifts from process data and subsequent verification of whether the process is 

under control using residuals is supported by Leone et al. (2011) and Alexopoulos 

et al. (2023). 

Tool wear in manufacturing processes is widely recognised by research studies as 

a significant cause of disruption to normality, which: 

• causes non-standard process signals and affects the probability distribution 

(Li et al., 2019; Lee et al., 2019; Gai et al., 2022; Cheng et al., 2023; 

Herrera-Granados et al., 2024; Huang et al., 2024),  

• degrades the quality of outputs and leads to process failures (Hao et al., 

2017; Lee et al., 2019; Herrera-Granados et al., 2024; Cheng et al., 2023), 

• requires advanced monitoring for early detection (Yan et al., 2021; Yang et 

al., 2022; Herrera-Granados et al., 2024). 
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Across the studies, tool wear is universally regarded as a natural, expected feature 

of machining processes. Recent reviews and studies focus on understanding, 

monitoring, and predicting its progression to minimise negative impacts on quality 

and productivity. As Munaro et al. (2023) point out, current studies are now 

working on updates or extensions to process capability analysis or frameworks for 

tool wear scenarios.  

3.2 Data structure 

Data structure refers to the way data is organised, grouped, or stored within  

a dataset. This category reflects the internal organisation of the dataset, which may 

be influenced, for example, by a combination of different data sources, time 

periods, production batches, or other segmentation criteria. The resulting structure 

can substantially affect the statistical properties of the data, including distribution. 

The nature of this category is that the non-normality arises as a result of the way 

the data are grouped and presented, not because of the content of the data itself. 

3.2.1 Data inhomogeneity and outliers 

Inhomogeneity can be caused by data from different sources or by data that are 

collected at different points in time or include different populations. Data 

homogeneity refers to data with similar statistical properties, i.e. the mean and 

variance do not differ significantly between subgroups, and the data have a similar 

model of distribution. Homogeneity and normality are quite different properties. 

Data can be homogeneous and exhibit normal or non-normal distributions, just as 

data can be inhomogeneous and come from different distributions. 

The solution is to use advanced probability models that can account for 

inhomogeneity, such as mixed models. One can also use a stratification, i.e. 

splitting the data into homogeneous subgroups and then analysing each group of 

data separately, or use conventional methods (quantile methods, transformation 

techniques) with outlying observations being identified and removed. 

Stratification can be performed according to different criteria depending on the 

nature of the data and the specifics of the production process. Suitable criteria may 

be period, machine or production equipment, operator, batch, production run, or 

material type. A major advantage of data stratification is that it provides more 

detailed information about process behaviour under different conditions. The 

process should then be proven to be capable under all these conditions.  

A comparison of the two approaches is shown in Table 2. 

Table 2 – Comparison of the properties of the stratification method and the mixed 

model. Source: Author's own work. 

Method Stratification Mixed model 

Advantages Simple and intuitive analysis, easy to 

use in exploratory data analysis 

Taking multiple factors into account 

simultaneously 

No complex modelling required Allowing modelling of random effects 
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Method Stratification Mixed model 

Obtaining more detailed information 

about the behaviour of the process under 

various conditions 

Maintaining overall data size 

Disadvantages Risk of information loss when data is 

split 

Need to correctly specify the 

structure/setting of the model 

Difficult to compare multiple factors at 

once 

Higher demands on knowledge and 

interpretation 

Interactions between factors are not 

taken into account, not suitable for more 

complex data structures 

May be sensitive to outliers 

May not always correspond to the 

monitored data 

 

A special case of inhomogeneity is for outliers that do not fit the probabilistic 

behaviour of the dataset under investigation. Graphical methods for outlier 

detection are not much affected by the division into parametric and non-parametric 

methods. Most tests are flexible enough to be applied to different types of data, 

regardless of their distribution. The statistical power of a test is the ability of the 

test to detect the true effect, if any. For example, outlying observations can 

significantly reduce the statistical power of a test (Cavus et al., 2023) as they 

increase the variability of the data, which may cause the test to fail to detect this 

true effect. If the data does not come from a normal distribution, a non-parametric 

test should be used. For mixed distributions (combination of two or more 

distributions) reported by Ag-Yi and Aidoo (2022), the Jarque-Bara test is 

appropriate. 

If it is suspected that the data do not come from a normal distribution, it is possible 

to use a so-called modified Z-score, which is less sensitive to outliers. The median 

and median absolute deviation (MAD) are used instead of the mean and standard 

deviation. |Modified Z| values > 3.5 are considered outliers (Mandić-Rajčević and 

Colosio, 2019; Bae and Ji, 2019). The modified Z-score is calculated according to 

the relation: 

𝑍𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 =
0.6745 (𝑥𝑖 − 𝑥̃)

𝑀𝐴𝐷
 (1) 

where 𝑥̃ is median, 0.6745 is a constant ensuring comparability with classical Z-

score for normal distribution, MAD is the median absolute deviation, which is 

calculated 𝑀𝐴𝐷 =  𝑥̃ (𝑥𝑖 − 𝑥̃), where 𝑥𝑖 is a specific value. 

Z-scores and modified Z-scores cannot be considered statistical hypothesis tests as 

they do not have a defined H0 and H1, do not return a p-value or make decisions 

based on a predetermined significance level, but can be part of hypothesis testing 

and a useful tool for outlier decision making. 

For a data that does not come from a normal distribution, a graphical method 

supplemented by quantification using modified Z-scores is the appropriate 

procedure. Similarly, it is possible to try to transform the data to approximate  
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a normal distribution and then apply the procedure to the normal data as part of the 

process capability analysis. 

The identification of outliers must be followed by an analysis of their causes. 

Outlying observations can only be excluded from the dataset if they are proven to 

be due measurement of recording error, and also if an external effect outside the 

standard process is proven, e.g. machine failure. 

3.2.2 Higher frequency of values near the limit value 

Similarly, the capability analysis can be continued if there are many values close 

to the limit value, if this is a property inherent in the process. The non-normal 

distribution will be known, and the behaviour of the process will be predictable. A 

higher concentration of values around the lower or upper tolerance limit may be 

due to the following - production process is continuously adjusted (i.e. maintained 

within specified tolerances), manufacturing process with one-sided control or a 

process with a shifted mean, control of strict quality requirements, repeated 

verification of the monitored characteristic after a certain period of use (e.g. wear 

phase), measurement system set to acceptability limits or use of adaptive control 

systems. 

Adjusting processes to those values cluster near specification limits or the target 

value is a well-known cause of non-normality in production process data. This 

often leads to skewed or bimodal distributions rather than a classic normal curve. 

Although it is well known in quality engineering that frequent adjustments of the 

process towards the limits can cause non-normal data distributions, no research 

papers have been found that directly study or model this effect. Even the search 

terms like "process adjustment induced non-normality" or "clustering near 

specification limits," do not return any relevant results. However, studies can be 

found that focus on the optimal setting of tolerance limits (Yi et al., 2025; Peng 

and Han, 2024). 

As an example, the model of log-normal distribution in Figure 4 is significantly 

right-skewed, most values are very close to the lower tolerance in this case. High 

values have a lower frequency. Such a process is one-sided adjustable, with 

adjustment to the lower tolerance. This type of distribution can occur if the 

operator or automated system continually adjusts the process to keep the output as 

close to the lower tolerance as possible, or if the process is naturally shifted 

towards the lower tolerance. In the case where the tolerance limit is not equal to 

zero, there is a high risk of non-conforming products occurring below the 

tolerance. 

A typical characteristic monitored in a production processes may be the thickness 

of the coating layer, where the operator or system can adjust the equipment to make 

the layers as thin as possible but still within tolerance. Another example might be 

the length of the overlap or clearance, such as the gap between parts, where the 

process is set up to ensure that the parts fit tightly. 
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Figure 4 – Histogram for log-normal distribution. Source: Author's own work. 

In this case, it is necessary to examine the reasons for the one-sided adjustment or 

to move the process further away from the tolerance limit.  

3.3 Data collection methodology 

A data collection methodology is a set of rules, procedures and techniques that 

determine how data is collected from a process. This category focuses on the 

temporal, spatial and organisational aspects of data collection that may affect the 

representativeness of the data. The nature of this category is that non-normality 

may be the result of an inappropriate choice of methodology that does not match 

the dynamics of the process or the nature of the characteristic being observed. The 

methodology of data collection is crucial for the validity of the statistical analysis 

because even a well-functioning process can be misinterpreted if data are collected 

in an inappropriate way.  

3.3.1 Inappropriate method of data collection 

Inappropriate data collection refers to situations where the method, time, place, or 

conditions of data collection (or its evaluation) do not correspond to the reality of 

the process, leading to distortion of the dataset. Non-normality caused by 

inappropriate collection can arise during the process phase, during the data 

collection itself, or after sorting inspection. These phases with the associated 

causes of non-normality are shown in Table 3. 

Table 3 – Phases of inappropriate data collection and related causes of non-

normality. Source: Author's own work. 

Process phase Cause of non-normality 

Production process collecting data only from a selected part of the process 
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Process phase Cause of non-normality 

collecting data after intervening in the process 

an unsuitable data collection interval 

Data collection 

manual sample selection 

preference of values close to the mean 

removal of extreme values 

Post-sorting inspection phase 
data after sorting inspection 

recording only compliant data (OK products) 

 

The production process phase relates to when and where data is collected within 

the production process. The data collection phase relates to the methods of 

selecting or manipulating data, regardless of the production process itself. When 

collecting data only from a selected part of the process, measurements are taken 

only at the beginning of a shift or by only one operator. This results in an 

unrepresentative sample, often with lower variability. Data collection after 

intervention in the process refers to a situation after machine adjustment or repair. 

The result then does not reflect the current state of the process. In the case of an 

inappropriately chosen data collection interval, a non-normality can arise as a 

result of an inappropriately chosen data collection interval, for example, when, in 

the case of process periodicity, this interval does not provide information about all 

process states. 

Data after sorting inspection describes a situation where data is collected only after 

non-compliant products have been discarded. In this case, the distribution will be 

artificially narrowed with lower dispersion, and normality may no longer be 

satisfied. When only compliant products are recorded, non-compliant products are 

not recorded, and part of the distribution is missing from the data file. 

The data collection phase is given as an example.  This one may reduce the 

variability of the data or lead to systematic errors if some products are discarded 

regularly or preferred for certain reasons.  

Based on the available research, there are not direct studies that specifically 

investigate how (sorting) products transforms an originally (normal) distribution 

into a non-normal one in measurement data. Rabatel et al. (2020) discuss how 

normalization and variable sorting can improve the robustness and interpretation 

of multivariate measurement data. Velyka et al. (2021) model sorting and 

distribution processes in a production environment and analyses the impact of 

different distribution laws (normal, exponential) on simulation outcomes. The 

remaining papers focus on sorting algorithms, and their impact on data processing 

or classification performance, but do not address the specific scenario of sorting 

products before measurement and its effect on data normality (Jain et al., 2018; 

Liao et al., 2024; Subramaniam and Chandra Umakantham, 2025). 
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As an example, data simulation was performed. The histogram for the original data 

is shown in Figure 5. In contrast, the histogram of data after sorting inspection in 

Fig. 6 shows the situation how this product sorting before measurement affects the 

distribution of the data and causes deviations from the normal distribution. This 

histogram represents the data after sorting inspection, where edge values have been 

systematically removed, here all values below 40 and above 60. Such interventions 

in the form of cut-off values lead to an artificial narrowing of the variance but do 

not reflect the true variability of the process. While all data (original) come from 

a normal distribution, the normality is violated for data after product sorting. 

 

Figure 5 – Histogram of data before product sorting. Source: Author's own 

work. 

 

Figure 6 – Histogram of data after product sorting. Source: Author's own work. 
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Distortion of distribution can also occur when some values are preferred, e.g. 

values close to the mean. There may be a significant concentration around the 

middle, with the outlying values significantly less represented or completely 

absent. This type of distortion can lead to the mistaken judgment that the process 

seems to be stable and has low variability, when in fact this is not the case. 

The following is recommended to prevent systematic distortion of data: 

• introduction of random or systematic sampling helps to ensure the 

representativeness of the data and eliminate human judgement, 

• replacing the human factor with automated measuring systems that record 

data without operator intervention, 

• introduction of blind sorting or measurements where the identification of 

the sample is unknown to avoid biasing the results, 

• keeping a record of who performed the sorting and how, including time and 

conditions, which can help to retrospectively identify sources of distortion. 

3.3.2 Sample size 

In the context of non-normality, it is also necessary to mention the issue of the 

sample. For the process capability analysis, at least 125 values (25 subgroups of 

size 5) are required. There may be a different size of subgroups, but the total 

number of values should not be less than 125 (AIAG, 2005). If the sample size is 

small, the probability of drawing an incorrect conclusion about the suitable model 

of distribution increases. The non-normality may be due to the fact that in such an 

under-represented sample, the estimates of the parameters of the distribution are 

not accurate, and the statistical tests show less power by making it less likely that 

the true effect will be detected. 

Important criteria in selecting a test are the number of values in the dataset (Demir, 

2022), the power of the test, and the sensitivity to deviations from normality. For 

example, for small samples (n<50) is recommended the Shapiro-Wilk test and for 

larger samples (n>50) the D'Agostino-Pearson test (Avram and Marusteri, 2022).  

Research shows that the Anderson-Darling test is flexible and can be used for a 

wide range of sample sizes. From 30 values and above, it is considered highly 

suitable. This test is also applicable to small sample sizes. Exact or simulated 

critical values are available for small sample sizes, and several studies provide 

tables or formulas for these cases (Kitani and Murakami, 2024). However, the 

statistical power of the test - its ability to detect deviations from the hypothesized 

distribution - is generally lower with very small samples, meaning the test may not 

reliably identify non-normality or other distributional differences when N is small 

(Jäntschi and Bolboacă, 2018). Despite this limitation, Razali and Wah (2011) state 

that the Anderson-Darling test is still considered one of the more powerful 

goodness-of-fit tests for small samples compared to alternatives like the 

Kolmogorov-Smirnov test. 
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As an example of changing the model of distribution, a log-normal distribution 

with parameters (0.8;1) was simulated and tested. Anderson-Darling test of 

goodness of fit with normal and log-normal distributions was performed. This 

change at different samples sizes is shown in Table 4. Even if the data does not 

come from a normal distribution, with a small sample size, the normality test may 

conclude that normality is achieved due to its low power. 

Table 4 – Anderson-Darling test result for simulated data from log-normal 

distribution (0.8;1). Source: Author's own work. 

Sample 

size 

p-value (N) Distribution p-value (log-N) Distribution 

100 <0.005 non-normal 0.076 log-normal 

50 <0.005 non-normal 0.765 log-normal 

30 <0.005 non-normal 0.697 log-normal 

20 <0.005 non-normal 0.694 log-normal 

10 0.059 normal 0.200 log-normal 

 

The same results (normality for a sample size of 10 values) were also obtained for 

the log-normal distribution with parameters (0;1), (1;0.5), (1;1) and (2;0.5). 

These simulations are intended to serve as an illustration of the behaviour of 

selected normality tests as a function of sample size. The results of this simulation 

do not aspire to be generalized to other data, given that the sensitiveness of the 

various tests is already well described in the literature. 

A conclusion about the suitable model of distribution should never be based on 

only one statistical test. A combination of tests, graphical visualizations, and an 

understanding of context are key to correctly interpreting data. It is important not 

to automatically assume normality for manufacturing process data. It is appropriate 

to combine tests with visual methods. If the test result is ambiguous or a small 

sample is available, it is appropriate to consider using non-parametric methods.  

3.4 Measurement systems 

The measurement systems category of causes of normality violation deals with the 

technical, environmental and human aspects of the measurement process. The 

nature of this category is that non-normality may be caused by the characteristics 

of the measurement equipment, the measurement conditions or the way the 

measurement is performed. This category therefore requires systematic monitoring 

and validation of measurement systems to ensure the consistency and accuracy of 

the data obtained. The category of measurement systems includes these potential 

causes of data non-normality:  

• technical characteristics of the measuring equipment, 

• changes in measurement conditions, 
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• measurement errors caused by human factors. 

Very few studies have been found that examine how data non-normality can arise 

with the contribution of the measurement system and how this affects further 

analyses. For example, Cabral et al. (2020) and Arellano-Valle et al. (2020) present 

advanced models for modelling measurement errors with non-normal 

distributions. Spicker et al. (2021) introduce a nonparametric method to correct for 

measurement error without assuming normality. 

Data non-normality can be caused by several reasons. Most of these causes can be 

detected and subsequently eliminated during the measurement system analysis 

(MSA) that precedes the statistical process control assessment, normality 

verification, and process capability analysis.  

3.4.1 Technical characteristics of the measuring equipment 

The causes associated with this area are defined as follows: 

• combination of two or more measuring systems, 

• limited resolution of the measuring system, 

• wear and tear of the measuring system, 

• measurement equipment failures, 

• incorrect calibration of the measuring system, 

- rounding off. 

A combination of two or more measuring systems 

In a production process, the same characteristic can be measured by two different 

devices (e.g. newer and older versions) that have different characteristics, e.g. 

accuracy, calibration, etc. Measurements may be taken at different workstations or 

on different shifts. The result is a mixture of two distributions. 

Recommendations: standardisation of measuring equipment (use of one or more 

of the same type), introduction of a uniform measurement procedure, regular 

calibration and comparison of results between measuring equipment, e.g. cross-

check method; keeping records of which equipment has been used for a given 

measurement. 

Limited resolution of the measuring system 

The measuring equipment used has a low resolution, e.g. it only measures whole 

units. The cause may be, for example, an analogue display or a digital step. The 

consequence is loss of detail, artificial grouping of values and reduced sensitivity. 

Recommendation: using a measuring device with higher resolution (e.g. instead of 

rounding to 0.5, measure to 0.1 or 0.01), calibrate the measuring device and 

thereby ensure that the rounding is consistent and predictable. If possible, a good 

approach is to keep the unrounded values. 

The limited resolution can be also compensated statistically. It depends on what 

type of analysis the data is intended for. If it is known that the values have been 

rounded, jittering, i.e. adding a small amount of random noise, can be used. The 
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use of this approach is mainly used to improve the analysis or visualization of the 

data. The addition of random noise helps to distinguish individual values that 

would otherwise be "inflated" to the same value due to rounding. Jittering avoids 

overlapping points and allows a better perception of the distribution of the data, 

but care must be taken to ensure that the added noise is small enough not to affect 

the interpretation of the data itself (Ropinski et al., 2021). 

Wear and tear of the measuring system 

Over time, wear and tear on the measuring equipment, e.g. its mechanical parts, 

leads to drift in the results. 

Recommendations: establish a maintenance and replacement plan for equipment, 

perform regular calibration, monitor trends in measurements, use control samples 

to verify accuracy of measurements 

Measurement equipment failures 

In a production environment, sudden failures and interruptions can occur for 

various reasons, causing extreme values or random errors. Possible causes include 

sensor failures, loss of communication between the measuring device and the data 

acquisition system, faulty software, mechanical damage or manual intervention in 

the measurement. 

Recommendations: introduction of automatic data consistency checking, regular 

inspection and diagnostics of the equipment, recording and analysis of error 

messages; introduction of alarms if the value exceeds the physically possible 

range; identification and analysis of outliers and their removal if they are 

confirmed as errors. 

Incorrect calibration of the measurement system 

Incorrect calibration leads to distorted data. The causes of incorrect calibration can 

be various, e.g. use of a wrong reference standard, mixing up of units, incorrect 

setting of the measuring range, change of software without subsequent 

recalibration, incorrect calculation of the correction factor or its absence. 

Recommendations: establish a calibration plan, use calibration standards and 

reference materials, perform check measurements on known samples after each 

calibration, document and track calibration results, monitor long-term trends in 

measurements. 

Rounding-off 

Rounding the values not only causes a loss of resolution but also creates a higher 

frequency of occurrence of certain values, and the original continuous variable 

starts to behave like a discrete variable. By rounding, the data loses its natural 

variability. 

Recommendations: check measurement device settings (increase resolution, 

disable automatic rounding), record original unrounded values, take rounding into 

account when interpreting results, use measurement device with higher accuracy. 
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3.4.2 Change of measurement conditions 

This situation is typically characterized by a shift of part of the data, which causes 

asymmetry. Measurements can take place under different conditions, e.g. different 

temperatures, humidity, vibrations, etc. Measurements can be performed by 

different operators or on different shifts. Other variations may include the 

influence of external factors (unstable power supply, electromagnetic interference, 

etc.) or insufficient stabilization of the measured component, e.g. after heating.  

Recommendations: introduction of environmental control (stable conditions), 

measurement and recording of conditions at each measurement, analysis of the 

effect of conditions on measurements, introduction of control samples (reference 

part measurements). 

3.4.3 Measurement errors caused by human factors 

These errors most often occur when an operator makes a mistake when reading  

a value or incorrectly records a measured value. Human error can be caused by  

a variety of factors - fatigue, inattention, stress, lack of training, improper use of 

measurement equipment, misinterpretation of results, or subjective estimation 

instead of accurate measurement. These errors are often unpredictable, which is 

why it is important to introduce standardised procedures, use automated systems 

and carry out regular training. 

Recommendations: implement training and standard operating procedures, use 

automated measurements, perform data entry checks. 

4 DISCUSSION ON PROCESS CAPABILITY ANALYSIS 

The different categories of causes of data non-normality, analysed in the previous 

chapter, also differ in the stage at which process capability analysis can be 

undertaken. In cases where the non-normality is due to an inherent property of the 

observed characteristics or process under study, the process capability analysis can 

proceed by transforming the data to a normal distribution before calculating the 

capability indices, or by applying modified quantile-based capability indices. Non-

normality due to data structure usually indicates that the data are not homogeneous 

or representative. In such cases, it is not appropriate to proceed with the process 

capability analysis without first modifying the dataset. If outliers are identified, 

they should be analyses and excluded from the dataset only if they are clear errors. 

If the non-normality is due to an inappropriate data collection methodology, the 

data collection must be repeated. Only after the methodological issues have been 

corrected and a new dataset has been obtained can a valid process capability 

analysis be carried out. The normality related to the measurement system 

deficiencies should be detected already in the phase preceding the process 

capability analysis, namely the measurement system analysis. If the MSA is 

performed correctly, most of the reported causes in this category should be 

identified. 
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5 CONCLUSION 

Violation of the data normality assumption is a significant problem in process 

capability analysis that can fundamentally affect the accuracy and objectivity of 

the results. This paper has systematically identified and analysed the main causes 

of data non-normality in the context of manufacturing processes, highlighting that 

non-normality is not always the result of random or special causes, but often arises 

from natural process behaviour, characteristics of the measured variables or 

deficiencies in the measurement systems. 

Research has shown that the causes of non-normality can be divided into several 

categories. Each of these categories has specific implications for the suitable model 

of distribution and requires a different approach to analysing the capability. For 

example, in the case of an intrinsic property of the observed quality characteristic, 

quantile methods or transformation techniques can be applied, whereas for non-

normality caused by product sorting, it is necessary to first remove systematic bias 

from the data. 

Particular attention was paid to the effect of instrument wear, which proved to be 

a significant factor disturbing the normality of the data. The results of the literature 

search confirm that wear leads to systematic trends that need to be identified prior 

to the capability analysis itself. It has also been shown that the causes of non-

normality related to higher frequency of values around the limit value and data 

related to product sorting before and after measurement have not received 

sufficient attention in research articles. 

Another important finding is the effect of sample size on the results of normality 

tests. Small samples can lead to incorrect conclusions about normality, whereas 

larger samples have higher test power and allow more accurate identification of 

non-normality. Therefore, it is essential to combine statistical tests with graphical 

methods and always consider the context of the data. 

One of the main contributions of this study is the systematic mapping and 

categorisation of the causes of data non-normality in manufacturing processes, 

which have not been comprehensively described in the literature in one place. 

While most available studies focus on specific types of distributions or the design 

of alternative capability indices, this paper provides a comprehensive overview of 

the causes that lead to violations of the normality assumption, including their 

practical manifestations, implications, and recommended solutions. This synthesis 

is based not only on an extensive search of research sources, but also on the 

author's practical experience in manufacturing organisations. The result is a clear 

framework that can serve as a guide for quality professionals in identifying and 

correcting non-normality in data. 

In conclusion, non-normality cause analysis should be an integral part of the 

capability analysis process, or a phase that should precede the process capability 

analysis. Only a thorough understanding of the origin of the non-normality allows 

to choose an appropriate analytical approach and to ensure reliable results. 
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Determining the cause of the non-normality is the key information for further 

proceeding with the process capability analysis. Only in case where the non-

normality is an inherent feature of the observed quality characteristic or process 

being analysed can it be continued. In other cases, the causes of the non-normality 

need to be removed and new data needs to be collected. 

This paper provides a practical framework for identifying and analysing the causes 

of non-normality that can be used in both academic research and industrial 

practice. Future research should focus on developing methods for their automatic 

detection and correction. 
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