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ABSTRACT  

Purpose: This study develops the novel inspection concept of quick switch 

sampling (QSS), integrating the process incapability index to determine the quality 

of the product based on the nonconforming fraction. 

Methodology/Approach: Product quality acceptance is determined through a 

nonlinear optimisation model that minimises the average sample number (ASN) 

for inspection, subject to constraints on predetermined quality levels and risks. The 

plan's effectiveness is evaluated based on the efficiency of ASN and the 

discriminatory power of its operating characteristics (OC) curve. 

Findings: The findings reveal that the QSS sampling strategy provides requisite 

quality assurance with reduced sample sizes relative to the conventional quality 

inspection model while maintaining discriminatory power between business 

partners. These findings highlight the potential of QSS systems to enhance the 

effectiveness of quality control while maintaining stringent quality standards.  

Research Limitation/Implication: The study was conducted under the 

assumption that quality characteristics are normally distributed.  

Originality/Value of paper: The development of a QSS plan integrated with the 

process incapability index offers adaptive inspection protocols that dynamically 

adjust inspection stringency in response to fluctuations in product quality and 

accommodate product sensitivity in terms of process accuracy and precision.   

 

Category: Research paper 

Keywords: quality control and assurance; normal inspection; process incapability 
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1 INTRODUCTION  

Acceptance sampling plans are effective and valuable instruments incorporated 

into statistical quality control (SQC) that assist manufacturers and consumers in 

deciding if a product batch or lot ought to be accepted or rejected (Schilling, 1982) 

(Darmawan, Bahri, et al., 2025). The main aim of a sampling plan is to offer 

decision-makers a systematic approach for deciding the fate of product lots 

according to established quality and risk standards (Montgomery, 2019). The 

effectiveness of a sampling plan can be evaluated using the operating characteristic 

(OC) curve and average sample number (ASN). The OC curve shows the 

likelihood of acceptance at different quality levels, highlighting a sampling plan's 

ability to differentiate. A steeper OC curve demonstrates greater discriminatory 

capability, allowing for more precise distinction between acceptable and 

unacceptable product lots. Moreover, a sampling system may include various plans 

with transition rules, enabling the monitoring of inspection records and the 

enhancement of sampling plan efficiency. These switching rules enable adaptive 

inspection protocols, using standard inspection plans for products showing high 

quality, while stricter inspection plans are adopted when there are notable 

decreases in product quality. Through the combination of various sampling plans 

alongside switching rules, organisations can improve the accuracy and 

effectiveness of their quality control measures, thereby guaranteeing the provision 

of superior products that adhere to strict quality criteria (Darmawan, Wu, et al., 

2025). This method allows industries to adapt quickly to variations in product 

quality, thus reducing the chance of defective products (Wu & Darmawan, 2025).  

The normal-tightened-normal sampling method, often known as quick switching 

systems (QSS), is a sampling approach that flexibly modifies inspection rigour 

based on variations in product quality. The origin of this rapid sampling method 

can be linked to MIL-STD-105D, with key input from Dodge (1965). Hald & 

Thyregod (1965) suggested normal and tightened inspection sampling by 

attributes. Romboski  (1969) performed a thorough examination of the system's 

characteristics using two different process models (QSS(n, cN, cT)) and later 

suggested essential recommendations for successful execution. Soundararajan & 

Arumainayagam (1990) advanced this idea by creating improved versions of QSS 

that included master tables. Later studies by Govindaraju & Ganesalingam (1998) 

proposed a two-plan sampling method featuring a zero acceptance number for 

inspection, enabling a reduction in sample size while preserving discrimination 

capability. 

The variable quick switching sampling (VQSS) technique was developed by 

Soundararajan & Palanivel (2000) for quality characteristics with double 

specification limits and normal distribution. This QSVSS system employs a fixed 

sample size but different critical values for normal and tightened inspections. This 

VQSS scheme is designed for normally distributed data with double specification 

limits, utilising a fixed sample size (n) for both normal and tightened inspections, 

but with distinct critical values (kT and kN). Building on this, Balamurali & Usha 

(2012) developed a VQSS model incorporating dual specification limits. Further 
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expanding on this work, Balamurali & Usha (2014) enhanced the VQSS scheme 

by integrating the process capability index, thereby increasing its effectiveness and 

applicability across various industrial contexts. 

Research on sampling plans that include capability indices has progressed, leading 

to the enhanced development of the VQSS scheme to incorporate different 

capability indices. Liu & Wu (2016) notably integrated the Spk index into VQSS, 

whereas Wu et al. (2017) introduced two variants of ((n; kN, kT) and (nN, nT; k)) 

that employed the Cpk index. Furthermore, Balamurali & Usha (2017)have played 

a role in this field by incorporating the Cpmk index into VQSS(n; kN, kT), illustrating 

the continuous advancement of this approach. These groundbreaking studies have 

established a foundation for creating advanced QSS systems, allowing industries 

to enhance their quality control methods and respond flexibly to variations in 

product quality. By utilising these sophisticated sampling methods, organisations 

can improve the effectiveness of their quality control procedures.  

Extensive research has been carried out in recent years to enhance VQSS from 

various perspectives, with inputs from Wang et al. (2021), Wang (2022), Wang & 

Shu (2023), Liu et al. (2023), Wu et al. (2024), Wang et al. (2025), and Wang & 

Wu (2025). Typically, VQSS tends to depend on process yield and high yield to 

assess product quality; however, this method overlooks fluctuations that occur 

within specification limits. The process incapability index (Cpp) provides a clearer 

view of process performance by highlighting the distinct difference between 

process accuracy and precision. Thus, this research seeks to develop two main 

types of VQSS for double sample size and single critical value ((nN, nT; k) and (nN, 

mnN; k)) employing the Cpp index, as well as to investigate, examine, and compare 

their performance and efficiency. Consequently, the creation of a VQSS strategy 

combined with the process incapability index provides flexible inspection 

protocols that modify inspection rigour according to variations in product quality 

and consider product sensitivity regarding process accuracy and precision. 

2 PROCESS INCAPABILITY INDEX CPP 

Process capability indices (PCIs) serve as valuable instruments for evaluating 

process capability, as their formulas are simple to grasp and easy to implement. 

The quadratic loss function index, Cpm, was created to evaluate and track the 

performance of production floors using the quality loss function. Nonetheless, due 

to the analytical complexity of the Cpm index's statistical characteristics, Greenwich 

and Jahr-Schaffrath (1995) advocated for using the process incapability index, Cₚₚ, 

to assess production process performance, as it distinctly differentiates between 

process accuracy and precision. The Cpp index can be expressed as Cpp = Cai + Cpi, 

where Cai reflects the process inaccuracy index (departure process mean from 

target value T) and Cpi (imprecision index) measure the extent of accuracy and 

precision in the process, respectively. As a result, the Cpp index can be represented 

as: 
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where µ indicates the average of the process, σ indicates the standard deviation of 

the process, T represents the target value, D=d/3, with d defined as (USL−LSL)/2, 

the half-width of specification, and USL and LSL denote the upper and lower 

specification limits, respectively. Furthermore, Cai is computed as (µ−T)²/(D)², 

while Cpi is represented as σ²/(D)². The index Cai assesses the deviation of process 

mean m from the target value T. For a centred process, Cai=0 indicates that the 

process is perfectly on target; Cai = 1 signifies that µ = USL, and Cai = -1 signifies 

µ = LSL. The index Cai gauges the extent of process departure ratios, whereas the 

index Cpi evaluates the scale of process variation. The Cpp index is a simple 

alteration of the Cpm index, providing a clear differentiation between data 

concerning process accuracy and process precision. Consequently, Cpp is a 

preferred option for engineers evaluating process potentials and performance. 

Table 1 shows a collection of commonly used Cpp values with their corresponding 

Cpm values (Chen & Chen, 2008). 

Table 1 – Commonly used Cpp and their corresponding Cpm values 
Condition Cpp Cpm 

Incapable 4 0.50 

Capable 1 1.00 

Satisfactory 0.5653 1.33 

Good 0.4444 1.50 

Excellent 0.3586 1.67 

Super 0.25 2.00 

Given that population parameters are often unknown in real-world applications, 

statistical inference relies on sample data to estimate these parameters for the Cₚₚ 

index. A natural estimator, Ĉₚₚ, is therefore employed to assess process capability 

through the Cₚₚ incapability index. The maximum likelihood estimate (MLE) of 

Cₚₚ, serves as a basis for this estimation (Chen, 1998): 
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Building on Equation 2 and the premise that the data follows a normal 

distribution, it is possible to establish a mathematical correlation between the Cₚₚ 

index and its estimator, which can be formulated as follows: 
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the relationship δ = nξ² = n(µ-T)²/σ² enables the distribution of Ĉₚₚ to be 

determined as 2

, /pp nC n + . However, the dependency on ξ can be 

circumvented by adopting a conservative approach in determining the sample size 

(n), as proposed by Sheu et al. (2014), who suggested setting ξ = 0. This 

assumption corresponds to the process mean being centred at the target value (T), 

thereby ensuring a reliable sample size for decision-making. Under this condition, 

the cumulative distribution function (CDF) of  can be derived as follows: 
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The process incapability index has undergone significant evolution since its 

inception, with numerous researchers contributing to its development and 

refinement. Building on the foundational work of Chen (1998) and Pearn & Lin 

(2001), subsequent studies have expanded its applicability and effectiveness in 

assessing process performance. Notable contributions include Wu & Yang (2002), 

Pearn et al. (2002), Chen et al. (2005), and Lin (2007). Recent investigations, such 

as those by Kahraman & Kaya (2011), Kaya & Baracli (2012), and Kaya (2014), 

have further broadened the index's utility. The development of variable single 

sampling plans based on the process incapability index, proposed by Sheu et al. 

(2014), marks a significant milestone in its application. Further advancements in 

the process incapability index have been made by Liao (2015), Gildeh & Ganji 

(2016), Ganji (2019), Gildeh & Ganji (2020), Bidabadi et al.  (2021), Leony & Lin 

(2022), Pakzad & Basiri (2023), Chen et al. (2024), and Bera & Anis (2024), who 

have refined and enhanced its utility in assessing process performance. These 

contributions underscore the index's evolving nature and the ongoing efforts to 

improve its effectiveness. The review study by Yum (2023) highlights the 

importance of ongoing research in this area. 

3 METHODOLOGY 

The VQSS framework employed in this study comprises two distinct single-

sampling plans, one for normal inspection and one for tightened inspection, with 

clearly defined rules governing the switching between these plans. Two primary 

variants of the VQSS framework are explored: VQSS(nN, nT; k) and VQSS 

(nN, nT = mnN; k). The first variant is characterised by distinct sample sizes for 

normal and tightened inspections, denoted as nN and nT, respectively, with a 

common critical threshold k. In contrast, the second variant assumes a proportional 

relationship between the sample sizes, where the tightened inspection sample size 

(nT) is determined as a multiple (m) of the normal inspection sample size (nN). 
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3.1 VQSS(nN, nT; k) 

The implementation of VQSS(nN, nT; k)  based on the estimated Process 

Incapability Index (Ĉpp) involves a series of steps, as depicted in Figure 1. Under 

the assumption of a normal distribution with two-sided specification limits, the 

process can be operationalised as follows: 

 

Figure 1 – Flow chart of VQSS(nN, nT; k) 

Define the producer's risk (α) and the consumer's risk (β). Establish the acceptable 

quality level (bAQL) and the unacceptable quality level (bRQL). Establish the critical 

value k using the sampling distribution of the calculated process incapability index 

(Ĉpp), along with the sample sizes (nN and nT). Based on the flowchart in Figure 1, 

the VQSS(nN, nT; k) procedure is operationalised through a two-stage inspection 

process. Firstly, under normal inspection, a random sample of size nN is drawn 

Start

Take a sample of size nN and use critical 

value k

Ĉpp   k Accept the lot

Reject the lot

Yes

No

Calculate the sample statistics and the 

estimated process loss index Ĉpp. 

Take a sample of size nT and use critical 

value k

Ĉpp   kReject the lot

Accept the lot

No

Yes

Calculate the sample statistics and the 

estimated process loss index Ĉpp. 

Set the plan parameters: 

α, β, bAQL, and bRQL 

Normal Inspection

Tightened Inspection
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from the lot, and the process incapability index (Ĉpp) is estimated based on the 

sample statistics. The lot is accepted if Ĉpp ≤ k. Otherwise, it is rejected, and the 

inspection mode is switched to Tightened Inspection. Secondly, in the tightened 

inspection mode, a new sample of size nT is drawn, and Ĉpp is recalculated. If Ĉpp 

≤ k, the lot is accepted, and the inspection mode reverts to normal Inspection for 

the next lot. However, if Ĉpp > k, the lot is rejected, and the inspection mode 

remains in tightened Inspection for the next lot or production is halted if quality 

deterioration persists. 

By following the operational procedure outlined earlier, the probability of lot 

acceptance PC(Cpp), also known as the Operating Characteristic (OC) function, for 

the VQSS(nN, nT; k) plan can be formulated in terms of the process incapability 

index Ĉpp. This formulation provides a mathematical basis for evaluating the 

performance of the VQSS plan as expressed. 
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The OC function's performance is evaluated based on its ability to meet the 

producer's and consumer's risk requirements, which requires the OC function to 

meet the two critical points: (bAQL, 1 − ) and (bRQL, ). By imposing these two-

point conditions on the mathematical expression for the OC function (Eq. (5) and 

(6)), we can derive the necessary equations to ensure that the sampling plan meets 

the desired risk levels as formulated below: 
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Given that VQSS involves two inspection modes with varying sample sizes, the 

ASN is a more suitable performance metric. The ASN, which represents the 

expected number of units inspected before a decision is made, can be calculated 

as: 

C
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The determination of plan parameters (nN, nT, k) necessitates the simultaneous 

solution of the two-point OC equations. However, due to the potential existence of 

multiple parameter sets that satisfy these constraints, the ASN is employed as the 

objective function to be minimised. This leads to the formulation of an 
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optimisation model that seeks to identify the optimal combination of nN, nT, and 

k that not only minimises ASN but also adheres to the specified producer's and 

consumer's risk levels. 
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Subject to 

C

AQL( ) 1A b  − , 

C

RQL( )A b  , 

T N 1n n  , AQL RQLb k b  . 

 

3.2 VQSS(nN, nT=mnN; k) 

In order to streamline the parameter determination process and enhance practical 

implementation, a specialised form of VQSS(nN, nT; k) is proposed, where the 

tightened-inspection sample size nT is assumed to be a multiple m of the normal-

inspection sample size nN (i.e., nT = m×nN with m > 1). This variant, denoted as 

VQSS(nN, nT=mnN; k), retains the same operational logic, acceptance probability 

function, and mathematical formulation as the general VQSS model. By imposing 

this constraint, the complexity of the optimisation procedure is reduced, as only 

two parameters (nN and k) need to be determined. Moreover, the VQSS(nN, 

nT=mnN; k) model encompasses the conventional VSS plan (Sheu et al., 2014) as 

a special case when m = 1, thereby providing a generalised extension of the VSS 

plan and broadening its applicability. 

4 RESULT ANALYSIS AND DISCUSSION 

To determine the optimal plan parameters for the VQSS within the framework 

established in this study, the sequential quadratic programming (SQP) algorithm 

was employed, leveraging the "fmincon" function available in MATLAB R2019a. 

This approach facilitated the efficient solution of the optimisation problem, 

yielding the desired plan parameters. 

4.1 Plan Parameters  

4.1.1 VQSS (nN, nT, k) 

To implement VQSS(nT, nN; k), three plan parameters need to be determined 

concurrently: the sample sizes for tightened inspection (nT) and normal inspection 

(nN), along with the critical value (k). Table 2 presents the plan parameters for 

VQSS(nN, nT; k) under various combinations that can be used by practitioners to 
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carry out the two-plan sampling system. For example, if the producer and the 

consumer have predetermined the conditions of (bAQL,bRQL)= (0.5917, 0.1000) and 

(α, β) = (0.05, 0.05), plan parameters (nN, nT; k) = (32, 273, 0.8523) can be obtained 

from Table 2. This means that 32 samples should be taken under normal inspection 

and 273 samples should be taken under tightened inspection, with a critical value 

of 0.8523. Afterwards, the Cpp can be calculated to decide whether to accept or 

reject the inspected lot. If Cpp exceeds the critical value k = 0.8523, the lot will be 

rejected; otherwise, it will be accepted. Moreover, if the lot is rejected under 

normal inspection, the inspection system has to be switched to a tightened 

inspection. However, when the lot is accepted during tightened inspection, normal 

inspection must be carried out for the next submitted lot to ensure the quality of 

the delivered products. 

Table 2 – Plan parameters of VQSS(nN, nT; k)  

    

bAQL = 0.5917, 

bRQL = 1.000 

bAQL = 0.4444, 

bRQL = 0.5917 

bAQL = 0.3673, 

bRQL = 0.4444 

bAQL = 0.2500, 

bRQL = 0.3673 

Nn  Tn  k  Nn  Tn  k  Nn  Tn  k  Nn  Tn  k  

0.010 

0.010 50 1250 0.9038 180 4231 0.5605 420 9580 0.4288 97 2335 0.3413 

0.050 46 942 0.9171 168 3187 0.5650 392 7213 0.4310 90 1759 0.3450 

0.100 44 778 0.9254 161 2626 0.5678 375 5939 0.4325 86 1451 0.3473 

0.050 

0.010 36 389 0.8340 131 1293 0.5369 306 2907 0.4167 71 719 0.3220 

0.050 32 273 0.8523 115 906 0.5433 269 2037 0.4201 62 504 0.3272 

0.100 29 215 0.8644 106 711 0.5476 248 1597 0.4223 57 396 0.3306 

0.100 

0.010 29 230 0.7887 104 757 0.5210 242 1695 0.4086 56 423 0.3092 

0.050 24 155 0.8081 87 510 0.5282 204 1140 0.4124 47 285 0.3149 

0.100 21 120 0.8216 78 391 0.5332 182 874 0.4150 42 219 0.3188 

 

4.1.2 VQSS(nN, nT=mnN; k)  

To simplify the determination of necessary parameters and implementation 

of VQSS in practical scenarios, an alternative type of VQSS(nN, nT; k) is proposed. 

This type assumes that the sample size for tightened inspection (nT) is equal to m 

times of the sample size for normal inspection (nN), represented as m× nN, where 

m > 1. It is important to note that when m = 1, VQSS and VSSP are identical. The 

solved plan parameters for the VQSS(nN, nT=mnN; k) under various conditions are 

provided in Tables 2-5, with m values of 1.5, 2.0, 2.5, and 3.0. These results offer 

practical guidance for practitioners and simplify the implementation of VQSS in 

their inspection processes. 

Table 2 – Plan parameters of VQSS(nN, nT; k) under m = 1.5 

    

bAQL = 0.5917, 

bRQL = 1.000 

bAQL = 0.4444, 

bRQL = 0.5917 

bAQL = 0.3673, 

bRQL = 0.4444 

bAQL = 0.2500, 

bRQL = 0.3673 

Nn  Tn  k  Nn  Tn  k  Nn  Tn  k  Nn  Tn  k  

0.010 0.010 128 192 0.7772 432 648 0.5177 978 1467 0.4070 239 358 0.3063 
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    

bAQL = 0.5917, 

bRQL = 1.000 

bAQL = 0.4444, 

bRQL = 0.5917 

bAQL = 0.3673, 

bRQL = 0.4444 

bAQL = 0.2500, 

bRQL = 0.3673 

Nn  Tn  k  Nn  Tn  k  Nn  Tn  k  Nn  Tn  k  

0.050 95 142 0.8104 323 484 0.5298 734 1100 0.4133 177 266 0.3159 

0.100 79 118 0.8333 271 406 0.5380 618 927 0.4176 148 222 0.3224 

0.050 

0.010 93 139 0.7407 307 461 0.5045 691 1037 0.4001 171 256 0.2958 

0.050 64 96 0.7722 216 324 0.5164 489 733 0.4065 120 179 0.3051 

0.100 51 77 0.7949 174 261 0.5249 395 593 0.4109 96 144 0.3118 

0.100 

0.010 76 113 0.7158 249 373 0.4952 557 836 0.3952 139 208 0.2884 

0.050 50 75 0.7445 168 251 0.5065 377 566 0.4013 93 139 0.2972 

0.100 39 59 0.7659 131 196 0.5148 296 444 0.4058 73 109 0.3036 

 
 

 Table 3 – Plan parameters of VQSS(nN, nT; k) under m = 2.0 

    

bAQL = 0.5917, 

bRQL = 1.000 

bAQL = 0.4444, 

bRQL = 0.5917 

bAQL = 0.3673, 

bRQL = 0.4444 

bAQL = 0.2500, 

bRQL = 0.3673 

Nn  Tn  k  Nn  Tn  k  Nn  Tn  k  Nn  Tn  k  

0.010 

0.010 112 223 0.7914 379 758 0.5228 861 1721 0.4097 209 417 0.3104 

0.050 85 169 0.8240 291 581 0.5346 663 1326 0.4158 159 318 0.3197 

0.100 72 143 0.8459 249 497 0.5423 569 1137 0.4198 136 271 0.3260 

0.050 

0.010 78 156 0.7538 262 523 0.5094 591 1182 0.4027 145 290 0.2996 

0.050 56 111 0.7853 189 378 0.5212 430 859 0.4090 104 208 0.3089 

0.100 46 91 0.8076 156 311 0.5294 354 708 0.4133 86 171 0.3154 

0.100 

0.010 63 125 0.7269 207 413 0.4996 465 930 0.3976 115 230 0.2918 

0.050 43 85 0.7561 143 286 0.5109 323 646 0.4037 79 158 0.3006 

0.100 34 67 0.7774 114 228 0.5191 259 517 0.4080 63 125 0.3070 

For instance, if a contract specifies conditions such as (bAQL,bRQL)=  (0.2500, 

0.3673), ( , )   = (0.05, 0.10), and m = 1.5, then plan parameters (nN, nT; k) = (86, 

171, 0.3154) can be obtained by referring to Table 2. This indicates that 86 samples 

must be collected under normal inspection, whereas 171 samples must be taken 

under tightened inspection. Then, ˆ
ppC  can be calculated based on the collected 

samples and compared with the critical value for lot sentencing. If ˆ 0.3154ppC  , 

the lot is rejected; otherwise, if ˆ 0.3154ppC  , the lot is accepted.   

Table 4 – Plan parameters of VQSS(nN, nT; k) under m = 2.5 

    

bAQL = 0.5917, 

bRQL = 1.000 

bAQL = 0.4444, 

bRQL = 0.5917 

bAQL = 0.3673, 

bRQL = 0.4444 

bAQL = 0.2500, 

bRQL = 0.3673 

Nn  Tn  k  Nn  Tn  k  Nn  Tn  k  Nn  Tn  k  

0.010 

0.010 101 252 0.8025 345 862 0.5268 785 1962 0.4117 190 474 0.3135 

0.050 78 195 0.8343 270 674 0.5381 617 1542 0.4176 148 368 0.3226 

0.100 67 167 0.8554 234 584 0.5455 536 1339 0.4214 127 318 0.3286 
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    

bAQL = 0.5917, 

bRQL = 1.000 

bAQL = 0.4444, 

bRQL = 0.5917 

bAQL = 0.3673, 

bRQL = 0.4444 

bAQL = 0.2500, 

bRQL = 0.3673 

Nn  Tn  k  Nn  Tn  k  Nn  Tn  k  Nn  Tn  k  

0.050 

0.010 69 173 0.7642 233 582 0.5133 528 1319 0.4047 129 322 0.3026 

0.050 51 126 0.7956 172 430 0.5249 392 979 0.4109 95 236 0.3119 

0.100 42 104 0.8174 144 358 0.5329 328 819 0.4151 79 196 0.3182 

0.100 

0.010 54 135 0.7360 181 451 0.5031 408 1018 0.3994 100 250 0.2945 

0.050 38 94 0.7654 128 318 0.5144 289 722 0.4055 70 175 0.3033 

0.100 30 75 0.7865 103 257 0.5225 235 586 0.4098 57 141 0.3096 

Table 5 – Plan parameters of VQSS(nN, nT; k) under m = 3.0 

    

bAQL = 0.5917, 

bRQL = 1.000 

bAQL = 0.4444, 

bRQL = 0.5917 

bAQL = 0.3673, 

bRQL = 0.4444 

bAQL = 0.2500, 

bRQL = 0.3673 

Nn  Tn  k  Nn  Tn  k  Nn  Tn  k  Nn  Tn  k  

0.010 

0.010 94 280 0.8114 321 962 0.5300 732 2194 0.4134 176 528 0.3161 

0.050 73 219 0.8426 255 764 0.5410 584 1751 0.4191 139 417 0.3249 

0.100 64 190 0.8630 223 668 0.5481 512 1536 0.4227 121 363 0.3307 

0.050 

0.010 63 188 0.7728 213 639 0.5164 484 1450 0.4064 118 352 0.3052 

0.050 47 139 0.8041 160 479 0.5280 365 1094 0.4125 88 262 0.3143 

0.100 39 116 0.8255 135 404 0.5357 309 925 0.4165 74 220 0.3205 

0.100 

0.010 49 145 0.7436 163 487 0.5060 368 1102 0.4010 90 270 0.2968 

0.050 34 102 0.7732 117 349 0.5173 265 795 0.4070 64 192 0.3056 

0.100 28 83 0.7941 95 285 0.5252 218 652 0.4112 52 156 0.3118 

 

4.2 Average Sample Number (ASN) 

In this part, we evaluate and contrast the efficacy of the suggested VQSS and VSSP 

by analysing the OC and ASN curves. We first perform a performance evaluation 

of the two kinds of VQSS and VSSP through the OC curve.  
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(a) ( , )  = (0.05, 0.05) (b) ( , )  = (0.10, 0.05)  

Figure 2 – The ASN curves of the VSS, VQSS(nN, nT=mnN; k) with m = 2.0, 3.0, 

VQSS(nN, nT; k) under (bAQL, bRQL) = (0.5917, 1.000)  

 

As the primary overall measurement system, we create the ASN curves for VSSP 

and the two varieties of VQSS to assess their sampling effectiveness from a 

financial perspective. Figures 2-3 show the ASN curves for VSSP, VQSS(nN, nT; 

k), VQSS(nN, nT=mnN; k) with varying m values (m = 2, 3), and risk levels of (α, 

β)=(0.05, 0.05), (0.10, 0.05), and quality levels (bAQL, bRQL) = (0.5917, 1.000) and 

(0.2500, 0.3673). It is clear that VSSP and VQSS(nN, nT=mnN; k), with varying m 

values, and VQSS(nN, nT; k) significantly rely on the quality of the lot. When the 

lot is of high quality, both VQSS(nN, nT=mnN; k) (independently of m's value) and 

VQSS(nN, nT; k) need a smaller sample size compared to VSSP. Furthermore, 

when the quality of the lot is inadequate (with a comparatively high value of Ĉpp), 

VQSS(nN, nT=mnN; k) and VQSS(nN, nT; k) typically need a greater quantity of 

sample items for evaluation, as tightened inspection may be essential to guarantee 

the quality of the lot. 

 

 



QUALITY INNOVATION PROSPERITY  29/3 – 2025  

 

ISSN 1338-984X (online) 

169 

  

(a) ( , )  = (0.05, 0.05) (b) ( , )  = (0.10, 0.05) 

Figure 3 – The ASN curves of the VSS, VQSS(nN, nT=mnN; k) with m = 2.0, 3.0, 

VQSS(nN, nT; k) under (bAQL, bRQL) = (0.2500, 0.3673)  

4.3 Operating Characteristics (OC) Curve 

The OC curve is a graphical representation of a sampling plan's ability to 

discriminate between different quality levels, with the acceptance probability 

plotted against the quality level. The slope of the OC curve serves as an indicator 

of the plan's discriminatory power, with steeper slopes indicating better 

performance. The proposed VQSS system, which integrates Normal-VSS and 

Tightened-VSS plans, is subjected to further investigation in terms of its OC curve 

behaviour. This figure combines two models of sampling plans under combination 

(bAQL, bRQL) = (0.5917, 1.000), ( , )  = (0.05, 0.10) and m = 3: the Normal-VSS 

plan with (nN, k) = (39, 0.8255) and the Tightened-VSS plan with (nT, k) = (116, 

0.8255). The VQSS system's performance is evaluated in comparison to its 

constituent plans, as illustrated in Figure 4. If the quality of the submitted lot is 

inadequate (i.e., it exceeds the critical value k = 0.8255), the OC curve of the VQSS 

system closely aligns with that of the Tightened-VSS plan. On the other hand, as 

the quality of the lot improves, the OC curve of the VQSS system approaches the 

curve of the Normal-VSS plan. This illustrates the VQSS system's adaptability in 

choosing the suitable inspection according to the real quality level, while 

preserving its discriminatory capability. The VQSS system adjusts to fluctuating 

quality standards, rendering it a reliable and efficient sampling solution. Utilising 

this flexibility, the VQSS system can offer efficient quality control while reducing 

unnecessary inspections. 
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Figure 4 – The OC curves of Normal-VSS plans, Tightened-VSS plans, and the 

VQSS system. 

  

(a) ( , )  = (0.05, 0.05) (b) ( , )  = (0.10, 0.05) 

Figure 5 – The OC curves of the VSSP, VQSS(nN, nT=mnN; k) with m = 2.0, 

3.0, VQSS(nN, nT; k), and (bAQL, bRQL) = (0.5917, 1.000). 

Figures 5 and 6 present the OC curves for the Variable Single Sampling (VSS) 

plan and the Variable Quick Switching Sampling (VQSS) system. Both plans are 

based on the process incapability index Ĉpp. They are evaluated under specific 

conditions, including two sets of AQL and RQL values (bAQL, bRQL) = (0.5917, 

1.000) and (0.2500, 0.3673), along with their corresponding risk levels (α, β) = 
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(0.05, 0.05) and (α, β) = (0.10, 0.05). The results demonstrate that both OC curves 

conform to the required conditions, passing through the designated points (bAQL, 1 

- α) and (bRQL, β). 

 

  

(a) ( , )  = (0.05, 0.05) (b) ( , )  = (0.10, 0.05) 

Figure 6 – The OC curves of the VSSP, VQSS(nN, nT=mnN; k)   with m = 2.0, 3.0, 

VQSS(nN, nT; k), and (bAQL, bRQL) = (0.2500, 0.3673) . 

 

Significantly, the OC curve of the VQSS system displays a moderate form 

compared to the ideal OC curve, indicating its ability to differentiate between 

acceptable and unacceptable quality levels. The data show that for the VQSS 

system with parameters VQSS(nN, nT = mnN; k), a higher value of m results in a 

steeper slope of the OC curve, reflecting enhanced discriminatory ability. In other 

terms, greater values of m improve the system’s capacity to differentiate between 

good- and poor-quality lots. 

5 CONCLUSION 

In the current competitive market environment, companies must focus on product 

quality to meet the growing demands of their clientele. Conventional acceptance 

sampling methods typically assess product quality by looking at process yield, 

which overlooks minor variations within specification limits. To address this 

limitation, the process incapability index (Cpp) was developed to measure process 

performance, taking into account both process accuracy and precision. This 

research presents an innovative two-stage sampling method, VQSS, which utilises 

the Cpp index to modify inspection rigour in response to variations in product 

quality. Through the integration of both tightened and normal inspection protocols, 

VQSS provides improved adaptability relative to traditional single sampling (VSS) 

plans. Two versions of VQSS were created and thoroughly assessed by utilising 
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operating characteristic (OC) and average sample number (ASN) curves. The 

findings indicate that VQSS outperforms VSSP in terms of adaptability and 

efficiency. By implementing VQSS, organisations can enhance their quality 

control procedures and respond more efficiently to fluctuations in product quality. 

This research contributes to the advancement of quality control techniques and 

provides valuable insights for sectors seeking to enhance their product quality. 

The proposed model, VQSS(nN, nT; k) and VQSS(nN, nT = mnN; k), offers a benefit 

in terms of sample size modification when transitioning to a stricter inspection plan 

due to a decline in lot quality. Moreover, these VQSS variants provide additional 

details for evaluating lot quality, motivating suppliers to improve product quality 

and reduce possible expenses. To aid implementation, the research provides 

detailed tables of plan parameters for every VQSS type, catering to various quality 

scenarios and risk combinations. Industries implementing VQSS can enhance their 

quality control systems and adjust to evolving product quality standards. The 

proposed system provides a beneficial framework for quality control professionals 

seeking to improve their inspection procedures. 
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