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ABSTRACT

Purpose: This study develops the novel inspection concept of quick switch
sampling (QSS), integrating the process incapability index to determine the quality
of the product based on the nonconforming fraction.

Methodology/Approach: Product quality acceptance is determined through a
nonlinear optimisation model that minimises the average sample number (ASN)
for inspection, subject to constraints on predetermined quality levels and risks. The
plan's effectiveness is evaluated based on the efficiency of ASN and the
discriminatory power of its operating characteristics (OC) curve.

Findings: The findings reveal that the QSS sampling strategy provides requisite
quality assurance with reduced sample sizes relative to the conventional quality
inspection model while maintaining discriminatory power between business
partners. These findings highlight the potential of QSS systems to enhance the
effectiveness of quality control while maintaining stringent quality standards.

Research Limitation/Implication: The study was conducted under the
assumption that quality characteristics are normally distributed.

Originality/Value of paper: The development of a QSS plan integrated with the
process incapability index offers adaptive inspection protocols that dynamically
adjust inspection stringency in response to fluctuations in product quality and
accommodate product sensitivity in terms of process accuracy and precision.

Category: Research paper

Keywords: quality control and assurance; normal inspection; process incapability
index; quick switching rules; tightened inspection; optimisation
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1 INTRODUCTION

Acceptance sampling plans are effective and valuable instruments incorporated
into statistical quality control (SQC) that assist manufacturers and consumers in
deciding if a product batch or lot ought to be accepted or rejected (Schilling, 1982)
(Darmawan, Babhri, ef al., 2025). The main aim of a sampling plan is to offer
decision-makers a systematic approach for deciding the fate of product lots
according to established quality and risk standards (Montgomery, 2019). The
effectiveness of a sampling plan can be evaluated using the operating characteristic
(OC) curve and average sample number (ASN). The OC curve shows the
likelihood of acceptance at different quality levels, highlighting a sampling plan's
ability to differentiate. A steeper OC curve demonstrates greater discriminatory
capability, allowing for more precise distinction between acceptable and
unacceptable product lots. Moreover, a sampling system may include various plans
with transition rules, enabling the monitoring of inspection records and the
enhancement of sampling plan efficiency. These switching rules enable adaptive
inspection protocols, using standard inspection plans for products showing high
quality, while stricter inspection plans are adopted when there are notable
decreases in product quality. Through the combination of various sampling plans
alongside switching rules, organisations can improve the accuracy and
effectiveness of their quality control measures, thereby guaranteeing the provision
of superior products that adhere to strict quality criteria (Darmawan, Wu, et al.,
2025). This method allows industries to adapt quickly to variations in product
quality, thus reducing the chance of defective products (Wu & Darmawan, 2025).

The normal-tightened-normal sampling method, often known as quick switching
systems (QSS), is a sampling approach that flexibly modifies inspection rigour
based on variations in product quality. The origin of this rapid sampling method
can be linked to MIL-STD-105D, with key input from Dodge (1965). Hald &
Thyregod (1965) suggested normal and tightened inspection sampling by
attributes. Romboski (1969) performed a thorough examination of the system's
characteristics using two different process models (QSS(#n, ¢n, cr)) and later
suggested essential recommendations for successful execution. Soundararajan &
Arumainayagam (1990) advanced this idea by creating improved versions of QSS
that included master tables. Later studies by Govindaraju & Ganesalingam (1998)
proposed a two-plan sampling method featuring a zero acceptance number for
inspection, enabling a reduction in sample size while preserving discrimination
capability.

The variable quick switching sampling (VQSS) technique was developed by
Soundararajan & Palanivel (2000) for quality characteristics with double
specification limits and normal distribution. This QSVSS system employs a fixed
sample size but different critical values for normal and tightened inspections. This
VQSS scheme is designed for normally distributed data with double specification
limits, utilising a fixed sample size (n) for both normal and tightened inspections,
but with distinct critical values (kr and An). Building on this, Balamurali & Usha
(2012) developed a VQSS model incorporating dual specification limits. Further
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expanding on this work, Balamurali & Usha (2014) enhanced the VQSS scheme
by integrating the process capability index, thereby increasing its effectiveness and
applicability across various industrial contexts.

Research on sampling plans that include capability indices has progressed, leading
to the enhanced development of the VQSS scheme to incorporate different
capability indices. Liu & Wu (2016) notably integrated the Sy index into VQSS,
whereas Wu et al. (2017) introduced two variants of ((n, kn, kt) and (nn, nt; k))
that employed the Cpr index. Furthermore, Balamurali & Usha (2017)have played
arole in this field by incorporating the Cpux index into VQSS(n; kn, k), illustrating
the continuous advancement of this approach. These groundbreaking studies have
established a foundation for creating advanced QSS systems, allowing industries
to enhance their quality control methods and respond flexibly to variations in
product quality. By utilising these sophisticated sampling methods, organisations
can improve the effectiveness of their quality control procedures.

Extensive research has been carried out in recent years to enhance VQSS from
various perspectives, with inputs from Wang et al. (2021), Wang (2022), Wang &
Shu (2023), Liu et al. (2023), Wu et al. (2024), Wang et al. (2025), and Wang &
Wu (2025). Typically, VQSS tends to depend on process yield and high yield to
assess product quality; however, this method overlooks fluctuations that occur
within specification limits. The process incapability index (Cpp) provides a clearer
view of process performance by highlighting the distinct difference between
process accuracy and precision. Thus, this research seeks to develop two main
types of VQSS for double sample size and single critical value ((nn, zt; k) and (nn,
mnn; k)) employing the C,, index, as well as to investigate, examine, and compare
their performance and efficiency. Consequently, the creation of a VQSS strategy
combined with the process incapability index provides flexible inspection
protocols that modify inspection rigour according to variations in product quality
and consider product sensitivity regarding process accuracy and precision.

2 PROCESS INCAPABILITY INDEX Cpp

Process capability indices (PCls) serve as valuable instruments for evaluating
process capability, as their formulas are simple to grasp and easy to implement.
The quadratic loss function index, C,n, was created to evaluate and track the
performance of production floors using the quality loss function. Nonetheless, due
to the analytical complexity of the C,,» index's statistical characteristics, Greenwich
and Jahr-Schaffrath (1995) advocated for using the process incapability index, C,,
to assess production process performance, as it distinctly differentiates between
process accuracy and precision. The C,, index can be expressed as Cpp = Cui + Cpi,
where C, reflects the process inaccuracy index (departure process mean from
target value 7) and C,; (imprecision index) measure the extent of accuracy and
precision in the process, respectively. As a result, the C,, index can be represented
as:
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u=T > (oY

(5] {5) “)
where u indicates the average of the process, o indicates the standard deviation of
the process, T represents the target value, D=d/3, with d defined as (USL—LSL)/2,
the half-width of specification, and USL and LSL denote the upper and lower
specification limits, respectively. Furthermore, Ca is computed as (u—7)*(D)?,
while Cp; is represented as ¢%/(D)>. The index C,; assesses the deviation of process
mean m from the target value 7. For a centred process, Cu=0 indicates that the
process is perfectly on target; C,; = 1 signifies that u = USL, and Cy; = -1 signifies
u = LSL. The index C, gauges the extent of process departure ratios, whereas the
index C,; evaluates the scale of process variation. The C,, index is a simple
alteration of the Cp,n index, providing a clear differentiation between data
concerning process accuracy and process precision. Consequently, C,, is a
preferred option for engineers evaluating process potentials and performance.

Table 1 shows a collection of commonly used C,, values with their corresponding
Cpm values (Chen & Chen, 2008).

Table 1 — Commonly used Cyp and their corresponding Cpm values

Condition Cop Com
Incapable 4 0.50
Capable 1 1.00
Satisfactory 0.5653 1.33
Good 0.4444 1.50
Excellent 0.3586 1.67
Super 0.25 2.00

Given that population parameters are often unknown in real-world applications,
statistical inference relies on sample data to estimate these parameters for the C,,
index. A natural estimator, C,,, is therefore employed to assess process capability
through the C,, incapability index. The maximum likelihood estimate (MLE) of
C,p, serves as a basis for this estimation (Chen, 1998):

v 2 2 v 2 n \2 i(Xi_T)z
@PP:(@j+S_n_(@J+lz<Xi—X> 4

Dz Dz Dz - : (2)

ns D? nD?

where )_(:ZXi/n, S? :Z(Xi—)_()z/n.

i=1 i=1

Building on Equation 2 and the premise that the data follows a normal
distribution, it is possible to establish a mathematical correlation between the C,,
index and its estimator, which can be formulated as follows:

. i:()(,.—T)2
e LT D o 7
pp _ =l . ~ — = o _ 4ns (3)
Cop nD [a+(,u—T) } n{“_((,u—T)zﬂ n+o
62
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the relationship 6 = né® = n(u-T)%0* enables the distribution of C,, to be

determined as C, x°.5/n+8. However, the dependency on ¢ can be

circumvented by adopting a conservative approach in determining the sample size
(n), as proposed by Sheu et al. (2014), who suggested setting ¢ = 0. This
assumption corresponds to the process mean being centred at the target value (7)),
thereby ensuring a reliable sample size for decision-making. Under this condition,
the cumulative distribution function (CDF) of can be derived as follows:

n,n(l+§2) - C

A n(1+&°
Fo (0N=PC,<y)= P{)/ < ﬂ] 4)
pp

The process incapability index has undergone significant evolution since its
inception, with numerous researchers contributing to its development and
refinement. Building on the foundational work of Chen (1998) and Pearn & Lin
(2001), subsequent studies have expanded its applicability and effectiveness in
assessing process performance. Notable contributions include Wu & Yang (2002),
Pearn et al. (2002), Chen et al. (2005), and Lin (2007). Recent investigations, such
as those by Kahraman & Kaya (2011), Kaya & Baracli (2012), and Kaya (2014),
have further broadened the index's utility. The development of variable single
sampling plans based on the process incapability index, proposed by Sheu et al.
(2014), marks a significant milestone in its application. Further advancements in
the process incapability index have been made by Liao (2015), Gildeh & Ganji
(2016), Ganji (2019), Gildeh & Ganji (2020), Bidabadi et al. (2021), Leony & Lin
(2022), Pakzad & Basiri (2023), Chen et al. (2024), and Bera & Anis (2024), who
have refined and enhanced its utility in assessing process performance. These
contributions underscore the index's evolving nature and the ongoing efforts to
improve its effectiveness. The review study by Yum (2023) highlights the
importance of ongoing research in this area.

3 METHODOLOGY

The VQSS framework employed in this study comprises two distinct single-
sampling plans, one for normal inspection and one for tightened inspection, with
clearly defined rules governing the switching between these plans. Two primary
variants of the VQSS framework are explored: VQSS(nn, nt; k) and VQSS
(nn, nt = mnx; k). The first variant is characterised by distinct sample sizes for
normal and tightened inspections, denoted as nn and nr, respectively, with a
common critical threshold £. In contrast, the second variant assumes a proportional
relationship between the sample sizes, where the tightened inspection sample size
(n1) 1s determined as a multiple (m) of the normal inspection sample size (nn).

ISSN 1338-984X (online)



162 QUALITY INNOVATION PROSPERITY 29/3 —2025

3.1 VQSS(n, n; k)

The implementation of VQSS(nn, nr; k) based on the estimated Process
Incapability Index (C,,) involves a series of steps, as depicted in Figure 1. Under
the assumption of a normal distribution with two-sided specification limits, the
process can be operationalised as follows:

Start

t

Set the plan parameters:
a, B, bAQL, and bRQL

4

‘ Normal Inspection Fi
v

Take a sample of size ny and use critical
value k

v

Calculate the sample statistics and the
estimated process loss index C,,.

@ Yes» Accept the lot
No

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

A
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value k&
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Figure I — Flow chart of VQSS(nn, nr; k)

Define the producer's risk () and the consumer's risk (f). Establish the acceptable
quality level (baqr) and the unacceptable quality level (brgr). Establish the critical
value k& using the sampling distribution of the calculated process incapability index
(Cypp), along with the sample sizes (nn and nt). Based on the flowchart in Figure 1,
the VQSS(nn, nt; k) procedure is operationalised through a two-stage inspection
process. Firstly, under normal inspection, a random sample of size nn is drawn
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from the lot, and the process incapability index (C,p) is estimated based on the
sample statistics. The lot is accepted if Cp, < k. Otherwise, it is rejected, and the
inspection mode is switched to Tightened Inspection. Secondly, in the tightened
inspection mode, a new sample of size nr is drawn, and C,, is recalculated. If Cp,
<k, the lot is accepted, and the inspection mode reverts to normal Inspection for
the next lot. However, if C,, > k, the lot is rejected, and the inspection mode
remains in tightened Inspection for the next lot or production is halted if quality
deterioration persists.

By following the operational procedure outlined earlier, the probability of lot
acceptance P(Cpp), also known as the Operating Characteristic (OC) function, for
the VQSS(nn, nt; k) plan can be formulated in terms of the process incapability
index Cpp. This formulation provides a mathematical basis for evaluating the
performance of the VQSS plan as expressed.

n (1+ & )xk
P;(CPP):P X:N,nN(Hiz)SN(C—) i (5)
pp
n(1+E )xk
PTC(C,,,))—P(Z;’HT(MZ) 3% (6)
pp

The OC function's performance is evaluated based on its ability to meet the
producer's and consumer's risk requirements, which requires the OC function to
meet the two critical points: (bagL, 1—« ) and (broL, #). By imposing these two-
point conditions on the mathematical expression for the OC function (Eq. (5) and
(6)), we can derive the necessary equations to ensure that the sampling plan meets
the desired risk levels as formulated below:

by ) = Pr) )
e 1_PNC(bAQL)+PTC(bAQL) ’
PS(b
7 (Be) = r Brar) ®)

I_P;(bRQL)+PTC(bRQL) ’

Given that VQSS involves two inspection modes with varying sample sizes, the
ASN 1is a more suitable performance metric. The ASN, which represents the
expected number of units inspected before a decision is made, can be calculated
as:

PE(C,)xmy +[1= B (C )%y
1-P{(C,)+BF(C,)

ASN(C,)) = 9)

The determination of plan parameters (nn, nt, k) necessitates the simultaneous
solution of the two-point OC equations. However, due to the potential existence of
multiple parameter sets that satisfy these constraints, the ASN is employed as the
objective function to be minimised. This leads to the formulation of an
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optimisation model that seeks to identify the optimal combination of nN, nT, and
k that not only minimises ASN but also adheres to the specified producer's and
consumer's risk levels.

P (b +[1-PE (b
Min ASN(bAQL) = ( AQL))ZnN L ]Z ( AQL)]XnT
ny,nr, k l_PN (bAQL)+})T (bAQL)

(10)

Subject to
”AC(bAQL) 2l-a,

ﬂ-j(bRQL) Sﬂ s

ny>ny>1,b,o, <k<b

QL = RQL *

3.2 VQSS(nn, nt=mnn; k)

In order to streamline the parameter determination process and enhance practical
implementation, a specialised form of VQSS(nn, nt; k) is proposed, where the
tightened-inspection sample size nt is assumed to be a multiple m of the normal-
inspection sample size nn (i.e., nt = mxnn with m > 1). This variant, denoted as
VQSS(nn, nt=mn; k), retains the same operational logic, acceptance probability
function, and mathematical formulation as the general VQSS model. By imposing
this constraint, the complexity of the optimisation procedure is reduced, as only
two parameters (nn and k) need to be determined. Moreover, the VQSS(nn,
nt=mnn; k) model encompasses the conventional VSS plan (Sheu et al., 2014) as
a special case when m = 1, thereby providing a generalised extension of the VSS
plan and broadening its applicability.

4 RESULT ANALYSIS AND DISCUSSION

To determine the optimal plan parameters for the VQSS within the framework
established in this study, the sequential quadratic programming (SQP) algorithm
was employed, leveraging the "fmincon" function available in MATLAB R2019a.
This approach facilitated the efficient solution of the optimisation problem,
yielding the desired plan parameters.

4.1 Plan Parameters
4.1.1 VQSS (nn, nt, k)

To implement VQSS(nt, nn; k), three plan parameters need to be determined
concurrently: the sample sizes for tightened inspection (n1) and normal inspection
(nn), along with the critical value (k). Table 2 presents the plan parameters for
VQSS(nn, nt; k) under various combinations that can be used by practitioners to
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carry out the two-plan sampling system. For example, if the producer and the
consumer have predetermined the conditions of (baqr,bror)= (0.5917, 0.1000) and
(a, f)=(0.05, 0.05), plan parameters (nn, nt; k) = (32,273, 0.8523) can be obtained
from Table 2. This means that 32 samples should be taken under normal inspection
and 273 samples should be taken under tightened inspection, with a critical value
of 0.8523. Afterwards, the C,, can be calculated to decide whether to accept or
reject the inspected lot. If C,, exceeds the critical value £ = 0.8523, the lot will be
rejected; otherwise, it will be accepted. Moreover, if the lot is rejected under
normal inspection, the inspection system has to be switched to a tightened
inspection. However, when the lot is accepted during tightened inspection, normal
inspection must be carried out for the next submitted lot to ensure the quality of
the delivered products.

Table 2 — Plan parameters of VOSS(nn, nr, k)

baoL = 0.5917, baoL = 0.4444, baoL =0.3673, baoL = 0.2500,
a Y/ broL =1.000 broL = 0.5917 broL = 0.4444 broL =0.3673
Ny ny k N ny k N ny k Ny ny k

0.010 | 50 | 1250 | 0.9038 | 180 | 4231 | 0.5605 | 420 | 9580 | 0.4288 | 97 | 2335 | 0.3413
0.010 | 0.050 | 46 | 942 | 0.9171 | 168 | 3187 | 0.5650 | 392 | 7213 | 0.4310 | 90 | 1759 | 0.3450

0.100 | 44 | 778 | 0.9254 | 161 | 2626 | 0.5678 | 375 | 5939 | 0.4325 | 86 | 1451 | 0.3473
0.010 | 36 | 389 | 0.8340 | 131 | 1293 | 0.5369 | 306 | 2907 | 0.4167 | 71 | 719 | 0.3220
0.050 | 0.050 | 32 | 273 | 0.8523 | 115 | 906 | 0.5433 | 269 | 2037 | 0.4201 | 62 | 504 | 0.3272
0.100 | 29 | 215 | 0.8644 | 106 | 711 | 0.5476 | 248 | 1597 | 0.4223 | 57 | 396 | 0.3306
0.010 | 29 | 230 | 0.7887 | 104 | 757 | 0.5210 | 242 | 1695 | 0.4086 | 56 | 423 | 0.3092
0.100 | 0.050 | 24 | 155 | 0.8081 | 87 | 510 | 0.5282 | 204 | 1140 | 0.4124 | 47 | 285 | 0.3149
0.100 | 21 | 120 | 0.8216 | 78 | 391 | 0.5332 | 182 | 874 | 0.4150 | 42 | 219 | 0.3188

4.1.2 VQSS(nn~, nt=mnx; k)

To simplify the determination of necessary parameters and implementation
of VQSS in practical scenarios, an alternative type of VQSS(nn, nt; k) is proposed.
This type assumes that the sample size for tightened inspection (nr) is equal to m
times of the sample size for normal inspection (nn), represented as m* nn, where
m > 1. It is important to note that when m = 1, VQSS and VSSP are identical. The
solved plan parameters for the VQSS(nn, nt=mnn; k) under various conditions are
provided in Tables 2-5, with m values of 1.5, 2.0, 2.5, and 3.0. These results offer
practical guidance for practitioners and simplify the implementation of VQSS in
their inspection processes.

Table 2 — Plan parameters of VOSS(nn, nr, k) under m = 1.5

baoL =0.5917, baoqL = 0.4444, baoL =0.3673, baoL = 0.2500,
a yij bror =1.000 broL = 0.5917 broL = 0.4444 broL =0.3673
iy ny k iy Ny k iy Ny k iy Ny k

0.010 | 0.010 | 128 | 192 | 0.7772 | 432 | 648 | 0.5177 | 978 | 1467 | 0.4070 | 239 | 358 | 0.3063
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baqL = 0.5917, baqL = 0.4444, baqL = 0.3673, baqL = 0.2500,
a yij bror =1.000 broL =0.5917 broL = 0.4444 broL =0.3673
Ny ny k LY ny k LY ny k LY ny k
0.050 | 95 | 142 | 0.8104 | 323 | 484 | 0.5298 | 734 | 1100 | 0.4133 | 177 | 266 | 0.3159
0.100 | 79 | 118 | 0.8333 | 271 | 406 | 0.5380 | 618 | 927 | 0.4176 | 148 | 222 | 0.3224
0.010 | 93 | 139 | 0.7407 | 307 | 461 | 0.5045 | 691 | 1037 | 0.4001 | 171 | 256 | 0.2958
0.050 | 0.050 | 64 | 96 | 0.7722 | 216 | 324 | 0.5164 | 489 | 733 | 0.4065 | 120 | 179 | 0.3051
0.100 | 51 | 77 | 0.7949 | 174 | 261 | 0.5249 | 395 | 593 | 0.4109 | 96 | 144 | 0.3118
0.010 | 76 | 113 | 0.7158 | 249 | 373 | 0.4952 | 557 | 836 | 0.3952 | 139 | 208 | 0.2884
0.100 | 0.050 | 50 | 75 | 0.7445 | 168 | 251 | 0.5065 | 377 | 566 | 0.4013 | 93 | 139 | 0.2972
0.100 | 39 | 59 | 0.7659 | 131 | 196 | 0.5148 | 296 | 444 | 0.4058 | 73 | 109 | 0.3036

Table 3 — Plan parameters of VOSS(nn, nr, k) under m = 2.0

baoL =0.5917, baquL = 0.4444, baqL = 0.3673, baqu = 0.2500,

a Yij bror =1.000 bror = 0.5917 broL = 0.4444 bror =0.3673

I | Br k o] Br k Iy iy k | Br k
0.010 | 112 | 223 | 0.7914 | 379 | 758 | 0.5228 | 861 | 1721 | 0.4097 | 209 | 417 | 0.3104
0.010 | 0.050 | 85 | 169 | 0.8240 | 291 | 581 | 0.5346 | 663 | 1326 | 0.4158 | 159 | 318 | 0.3197
0.100 | 72 | 143 | 0.8459 | 249 | 497 | 0.5423 | 569 | 1137 | 0.4198 | 136 | 271 | 0.3260
0.010 | 78 | 156 | 0.7538 | 262 | 523 | 0.5094 | 591 | 1182 | 0.4027 | 145 | 290 | 0.2996
0.050 | 0.050 | 56 | 111 | 0.7853 | 189 | 378 | 0.5212 | 430 | 859 | 0.4090 | 104 | 208 | 0.3089
0.100 | 46 | 91 | 0.8076 | 156 | 311 | 0.5294 | 354 | 708 | 0.4133 | 86 | 171 | 0.3154
0.010 | 63 | 125 | 0.7269 | 207 | 413 | 0.4996 | 465 | 930 | 0.3976 | 115 | 230 | 0.2918
0.100 | 0.050 | 43 | 85 | 0.7561 | 143 | 286 | 0.5109 | 323 | 646 | 0.4037 | 79 | 158 | 0.3006
0.100 | 34 | 67 | 0.7774 | 114 | 228 | 0.5191 | 259 | 517 | 0.4080 | 63 | 125 | 0.3070

For instance, if a contract specifies conditions such as (baqr,broL)=

(0.2500,

0.3673), (a,p) =(0.05, 0.10), and m = 1.5, then plan parameters (nn, nt; k) = (86,

171,0.3154) can be obtained by referring to Table 2. This indicates that 86 samples
must be collected under normal inspection, whereas 171 samples must be taken

under tightened inspection. Then, épp can be calculated based on the collected

samples and compared with the critical value for lot sentencing. If C L <0.3154,

the lot is rejected; otherwise, if épp >0.3154, the lot is accepted.

Table 4 — Plan parameters of VOSS(nn, nr, k) under m = 2.5

baoL = 0.5917, baoL = 0.4444, baqL = 0.3673, baqL = 0.2500,
a B bror =1.000 broL = 0.5917 broL = 0.4444 broL =0.3673
iy iy k My Iy k y Iy k Ty Iy k
0.010 | 101 | 252 | 0.8025 | 345 | 862 | 0.5268 | 785 | 1962 | 0.4117 | 190 | 474 | 0.3135
0.010 | 0.050 | 78 | 195 | 0.8343 | 270 | 674 | 0.5381 | 617 | 1542 | 0.4176 | 148 | 368 | 0.3226
0.100 | 67 | 167 | 0.8554 | 234 | 584 | 0.5455 | 536 | 1339 | 0.4214 | 127 | 318 | 0.3286

ISSN 1338-984X (online)



QUALITY INNOVATION PROSPERITY 29/3 —2025 167
baqL = 0.5917, baqL = 0.4444, baqL = 0.3673, baqL = 0.2500,
a B broL =1.000 broL = 0.5917 broL = 0.4444 broL =0.3673
iy ny k iy Ny k iy Ny k iy Ny k
0.010 | 69 | 173 | 0.7642 | 233 | 582 | 0.5133 | 528 | 1319 | 0.4047 | 129 | 322 | 0.3026
0.050 | 0.050 | 51 | 126 | 0.7956 | 172 | 430 | 0.5249 | 392 | 979 | 0.4109 | 95 | 236 | 0.3119
0.100 | 42 | 104 | 0.8174 | 144 | 358 | 0.5329 | 328 | 819 | 0.4151 | 79 | 196 | 0.3182
0.010 | 54 | 135 | 0.7360 | 181 | 451 | 0.5031 | 408 | 1018 | 0.3994 | 100 | 250 | 0.2945
0.100 | 0.050 | 38 | 94 | 0.7654 | 128 | 318 | 0.5144 | 289 | 722 | 0.4055 | 70 | 175 | 0.3033
0.100 | 30 | 75 | 0.7865 | 103 | 257 | 0.5225 | 235 | 586 | 0.4098 | 57 | 141 | 0.3096
Table 5 — Plan parameters of VOSS(nn, n1; k) under m = 3.0
baoL = 0.5917, bagL = 0.4444, baoL =0.3673, baoL = 0.2500,
a B broL =1.000 broL = 0.5917 broL = 0.4444 broL =0.3673
Ny Ny k N ny k Ny ny k N ny k
0.010 | 94 | 280 | 0.8114 | 321 | 962 | 0.5300 | 732 | 2194 | 0.4134 | 176 | 528 | 0.3161
0.010 | 0.050 | 73 | 219 | 0.8426 | 255 | 764 | 0.5410 | 584 | 1751 | 0.4191 | 139 | 417 | 0.3249
0.100 | 64 | 190 | 0.8630 | 223 | 668 | 0.5481 | 512 | 1536 | 0.4227 | 121 | 363 | 0.3307
0.010 | 63 | 188 | 0.7728 | 213 | 639 | 0.5164 | 484 | 1450 | 0.4064 | 118 | 352 | 0.3052
0.050 | 0.050 | 47 | 139 | 0.8041 | 160 | 479 | 0.5280 | 365 | 1094 | 0.4125 | 88 | 262 | 0.3143
0.100 | 39 | 116 | 0.8255 | 135 | 404 | 0.5357 | 309 | 925 | 0.4165 | 74 | 220 | 0.3205
0.010 | 49 | 145 | 0.7436 | 163 | 487 | 0.5060 | 368 | 1102 | 0.4010 | 90 | 270 | 0.2968
0.100 | 0.050 | 34 | 102 | 0.7732 | 117 | 349 | 0.5173 | 265 | 795 | 0.4070 | 64 | 192 | 0.3056
0.100 | 28 | 83 | 0.7941 | 95 | 285 | 0.5252 | 218 | 652 | 0.4112 | 52 | 156 | 0.3118

4.2 Average Sample Number (ASN)

In this part, we evaluate and contrast the efficacy of the suggested VQSS and VSSP
by analysing the OC and ASN curves. We first perform a performance evaluation
of the two kinds of VQSS and VSSP through the OC curve.
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Figure 2 — The ASN curves of the VSS, VOSS(nn, nt=mnn; k) with m = 2.0, 3.0,
VOSS(nn, nr, k) under (baor, bror) = (0.5917, 1.000)

As the primary overall measurement system, we create the ASN curves for VSSP
and the two varieties of VQSS to assess their sampling effectiveness from a
financial perspective. Figures 2-3 show the ASN curves for VSSP, VQSS(nn, nT;
k), VQSS(nn, nt=mnn; k) with varying m values (m = 2, 3), and risk levels of (a,
£)=(0.05, 0.05), (0.10, 0.05), and quality levels (baqr, bror) = (0.5917, 1.000) and
(0.2500, 0.3673). It is clear that VSSP and VQSS(nn, nt=mnn; k), with varying m
values, and VQSS(nn, nt; k) significantly rely on the quality of the lot. When the
lot is of high quality, both VQSS(nn, nt=mnn; k) (independently of m's value) and
VQSS(nn, nt; k) need a smaller sample size compared to VSSP. Furthermore,
when the quality of the lot is inadequate (with a comparatively high value of C,),
VQSS(n~, nt=mnx; k) and VQSS(nn, nt; k) typically need a greater quantity of
sample items for evaluation, as tightened inspection may be essential to guarantee
the quality of the lot.
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Figure 3 — The ASN curves of the VSS, VOSS(nn, nt=mnn; k) with m = 2.0, 3.0,
VOSS(nn, nr, k) under (baor, bror) = (0.2500, 0.3673)

4.3 Operating Characteristics (OC) Curve

The OC curve is a graphical representation of a sampling plan's ability to
discriminate between different quality levels, with the acceptance probability
plotted against the quality level. The slope of the OC curve serves as an indicator
of the plan's discriminatory power, with steeper slopes indicating better
performance. The proposed VQSS system, which integrates Normal-VSS and
Tightened-VSS plans, is subjected to further investigation in terms of its OC curve
behaviour. This figure combines two models of sampling plans under combination
(baor, bror) = (0.5917, 1.000), (a, p)= (0.05, 0.10) and m = 3: the Normal-VSS
plan with (nn, k) = (39, 0.8255) and the Tightened-VSS plan with (nt, k) = (116,
0.8255). The VQSS system's performance is evaluated in comparison to its
constituent plans, as illustrated in Figure 4. If the quality of the submitted lot is
inadequate (i.e., it exceeds the critical value £ = 0.8255), the OC curve of the VQSS
system closely aligns with that of the Tightened-VSS plan. On the other hand, as
the quality of the lot improves, the OC curve of the VQSS system approaches the
curve of the Normal-VSS plan. This illustrates the VQSS system's adaptability in
choosing the suitable inspection according to the real quality level, while
preserving its discriminatory capability. The VQSS system adjusts to fluctuating
quality standards, rendering it a reliable and efficient sampling solution. Utilising
this flexibility, the VQSS system can offer efficient quality control while reducing
unnecessary inspections.

ISSN 1338-984X (online)

0.45



5
=2
T

s = 2
s wn =}

e

Probability of Acceptance
w

=
%

S
-

170

QUALITY INNOVATION PROSPERITY 29/3 —2025

Probability of acceptance
O~
N w LS wn =)} N | =2} =] i
T T T T T T T T

S
(5
T

T

= ==VQSS
== =VQSS (Tightened)
V' QSS (Normal)

;c
N

0.6 0.8

C Value
pp

1.2 1.4

Figure 4 — The OC curves of Normal-VSS plans, Tightened-VSS plans, and the

VOSS system.

<

S
Q
T

e
)
T

o
=
T

Probability of Acceptance
o o
w wn

15

—VSSP

—-=VQSS (nV, mn; k) with m=2.0 |-
VQSS ("\J’ mn; k) with m=3.0
..... VQSS (ny, 15 k) il

—VSSP
- | == VQSS (nN, mn; k) with m=2.0 0.2
| VQSS (nN, mn; k) with m=3.0 04
| [amnan VQsSS (nN, nes k)
! ! ! ! 0
0.4 0.5 0.6 0.7 0.8 0.4

C Value
p

(a) (a, )= (0.05, 0.05)

(b) (a, 8)= (0.10, 0.05)

Figure 5 — The OC curves of the VSSP, VOSS(nn, nr=mnn; k) with m = 2.0,
3.0, VOSS(nn, nr; k), and (baor, bror) = (0.5917, 1.000).

Figures 5 and 6 present the OC curves for the Variable Single Sampling (VSS)

plan and the Variable Quick Switching Sampling (VQSS) system. Both plans are

based on the process incapability index C,,. They are evaluated under specific
conditions, including two sets of AQL and RQL values (baqr, bror) = (0.5917,
1.000) and (0.2500, 0.3673), along with their corresponding risk levels (a, f) =
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(0.05, 0.05) and (a, ) = (0.10, 0.05). The results demonstrate that both OC curves
conform to the required conditions, passing through the designated points (baqr, 1
- o) and (braL, p).
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Figure 6 — The OC curves of the VSSP, VOSS(ny, ny=mny; k) with m = 2.0, 3.0,
VOSS(nn, nt, k), and (baor, bror) = (0.2500, 0.3673) .

Significantly, the OC curve of the VQSS system displays a moderate form
compared to the ideal OC curve, indicating its ability to differentiate between
acceptable and unacceptable quality levels. The data show that for the VQSS
system with parameters VQSS(nn, nt = mnx; k), a higher value of m results in a
steeper slope of the OC curve, reflecting enhanced discriminatory ability. In other
terms, greater values of m improve the system’s capacity to differentiate between
good- and poor-quality lots.

S CONCLUSION

In the current competitive market environment, companies must focus on product
quality to meet the growing demands of their clientele. Conventional acceptance
sampling methods typically assess product quality by looking at process yield,
which overlooks minor variations within specification limits. To address this
limitation, the process incapability index (C,,) was developed to measure process
performance, taking into account both process accuracy and precision. This
research presents an innovative two-stage sampling method, VQSS, which utilises
the Cpp index to modify inspection rigour in response to variations in product
quality. Through the integration of both tightened and normal inspection protocols,
VQSS provides improved adaptability relative to traditional single sampling (VSS)
plans. Two versions of VQSS were created and thoroughly assessed by utilising
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operating characteristic (OC) and average sample number (ASN) curves. The
findings indicate that VQSS outperforms VSSP in terms of adaptability and
efficiency. By implementing VQSS, organisations can enhance their quality
control procedures and respond more efficiently to fluctuations in product quality.
This research contributes to the advancement of quality control techniques and
provides valuable insights for sectors seeking to enhance their product quality.

The proposed model, VQSS(nn, nt; k) and VQSS(nn, nt = mnn; k), offers a benefit
in terms of sample size modification when transitioning to a stricter inspection plan
due to a decline in lot quality. Moreover, these VQSS variants provide additional
details for evaluating lot quality, motivating suppliers to improve product quality
and reduce possible expenses. To aid implementation, the research provides
detailed tables of plan parameters for every VQSS type, catering to various quality
scenarios and risk combinations. Industries implementing VQSS can enhance their
quality control systems and adjust to evolving product quality standards. The
proposed system provides a beneficial framework for quality control professionals
seeking to improve their inspection procedures.
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