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A MATHEMATICAL MODEL FOR PROCESS CYCLE  
TIME - THEORY AND CASE STUDY  

FILIP TOŠENOVSKÝ 

1    INTRODUCTION 
It is a common practice to carry out an economic analysis, using mathematical 
model of the form   =   +      + ⋯ +      +   . The relation is an 
expression of dependence of the i-th level of random variable   on the i-th level 
of variables   , … ,    that represent the most influential factors, and also its 
dependence on the random variable   which represents the remaining factors. It 
is assumed that variables    have zero expected value, they are uncorrelated and 
have a constant variance, i.e.   (  ) = 0 for any i,    (  ) =    for any i and    (  ,   ) = 0 for  ≠  . The least squares method and a data sample (  , … ,   ),  (   , … ,    ),  = 1,2, … ,  , are used to estimate the unknown parameters   . If 
the conditions imposed on    hold, the least squares method yields the best linear 
unbiased estimates of the coefficients   . From a practical point of view, 
however, it is more important that we get estimates that do not differ much from 
the unknown coefficients   , with a probability that increases as the size of the 
data sample   increases (Greene, 1990). The importance of this statistical 
property lies in the fact that the estimates have this characteristic when any single 
data sample of size   is used, whereas the property of being an unbiased estimate 
relates to an average estimate computed from at least a large number of generally 
different data samples of size  , and theoretically from an infinite number of 
such data samples. Given that meeting the condition  (  ) = 0 is assumed a 
priori, it is obvious that no correlation, or more generally statistical 
independence, and the constant variance of the variables    is what we are 
interested in when building a model. If    (  ) depends on i, we may try to find 
a transformation T such that variance of the transformed variable    ( (  )) 
will be stable. Using the Box-Cox transformation is one of the ways how to find 
the function T.  The Box-Cox transformation is useful in that it may also bring 
the probability distribution of    closer to normal distribution, apart from 
stabilizing the variance (Box, Cox 1964). The additional prerequisite of 
normality then ensures estimates of    are the best unbiased estimates of all 
conceivable estimates, not only of those that are linear in its nature. 
 
In this article, we derive a suitable transformation T, and thus a regression model 
as well, to describe a dependence of working process cycle time   on relevant 
factors   , … ,    that enter the process. We specifically deal with processes that 
are stable in a certain sense. At the end of the article, we also present a real 
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industrial case study in which the derived model was used. Since we model 
process cycle time, we may assume that the variable   we work with is positive. 

2    BOX-COX TRANSFORMATION 
We use the Box-Cox transformation to find an appropriate function T that 
stabilizes the variance of a positive random variable  , and which may also bring 
the distribution of   closer to normality. The Box-Cox transformation is defined 
as 
 								  ( ) =    − 1 for	λ ≠ 0,	
 
where    is the i-th value of the original variable and   ( ) is the i-th value of the 
transformed variable. The transformation depends on parameter lambda. If the 
parameter is close to zero, the transformation   ( ) =   (  ) is used as lim →      − 1  ⁄  =   (  ). We set the following objective: finding lambda 
which stabilizes the variance    (  ( )), i.e. finding lambda such that the 
variance of the transformed variable is constant regardless of i. We shall find the 
lambda for a working process that is characterized by the fact that the expression    (  )/ (  ) , or the squared coefficient of variation of   , is constant 
regardless of i. 

3    LAMBDA 

It is suitable to express    (  ( )) as a function of lambda if we are to find the 
lambda stabilizing    (  ( )). However, such an expression is unknown exactly 
due to the fact that   ( ) is a nonlinear function of lambda. Therefore, we shall 
first approximate linearly    , using the Taylor polynomial function of the first 
order (Jarník, 1984). Doing so from a positive point  , we get for i = 1,2,…,n an 
approximation 
 																																																					   	≅   +      (  −  ),																																							(1) 
 
so that 
 																					   (   ) ≅       +      (  −  ) =            (  ).											(2)	
 
Altogether, we have for  ≠ 0	
 								   (  ( )) =        − 1  ≅ 1            (  ) =         (  ).					(3) 
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Approximation (1) can be used whenever the right-hand side and the left-hand 
side of the expression (1) make sense. This is certainly the case when the values   ,   are positive as is our case in which the variables    represent a working 
process cycle time. There is no other problem in expression (1). The question is 
how accurate the approximation is. If the values    are close to the point  , the 
approximation is acceptable, otherwise it doesn’t have to be acceptable. Since the 
variables    may come from probability distributions that have different 
parameters, it is not wise to approximate them from a single point  . It is more 
natural to use expected values  (  ) which characterize the location of    (Rényi, 
1970). If we use the expected values, we get for i =1,2,…,n an approximation 
 																											   (  ( )) ≅  (  )       (  ) =  (  )     (  ) (  ) .																			(4) 

 
If the ratio    (  )/ (  )  doesn’t change too much with respect to i, then (4) 
implies that the variance of the transformed variables will be stable if lambda is 
close to zero. If the ratio is more or less equal to a constant C, we have for a very 
small lambda 
 																												   (  ( )) ≅  (  )     (  ) (  ) ≅  (  ) .  =  .																										(5) 

 
Thus, a very small lambda used in the Box-Cox transformation stabilizes 
variance provided the second power of the coefficient of variation is stable. This, 
however, means logarithmic transformation is the transformation we were 
looking for. This leads to a model 
 																													  ( ) =   (  ) =   +      + ⋯ +      +   ,																												(6) 
 
or 
 																																				 {  (  )} =   +      + ⋯ +      ,																																				(7) 
 
where on the right-hand side we may as well work with a more general 
expression, but preferably with the one linear in parameters, i.e. with an 
expression of the form   +     (   , … ,    ) + ⋯ +     (   , … ,    ). It is 
known that the statistical properties of coefficient estimates resulting from the 
least squares method hold for the more complex functional form as well. 

4    MODEL 
It would be better if we worked with the model   ( (  )) =   +      + ⋯ +     , which leads to equation  (  ) = exp	(  +      + ⋯ +      ), instead of 
(7). Expected value of logarithm is not equal to logarithm of expected value, but 
under certain conditions we may still perform this substitution (see below). The 
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conclusion then is: if    (  )/ (  )  shows stability, a suitable model is of the 
form 
 																																						 (  ) = exp	(  +      + ⋯ +      )																															(8) 
 
It is obvious from the described procedure that we may restrict ourselves to a 
positive and small lambda as it has the same effect on variance as a negative and 
small lambda. Let us examine now the approximations we used in the process of 
deriving the model: 
 

a) approximation (1); 
b) approximation  (  )  ≅ 1 for a very small (and positive) lambda; 
c) approximation   { (  )} ≅  {  (  )}. 

 
Approximation b) is apparently of no harm given the continuity of exponential 
function. If lambda is small and    is not too small, approximation a) is of no 
harm either because    as a function of   has the derivative      ⁄ =(1  )⁄    , and this derivative will be close to zero for a small lambda and not 
too small  . Thus, the function    will be very flat (see an example of such a 
function in figure 1). In this case, approximation of such a function by a line will 
be suitable. Approximation c) will be the major source of inaccuracy. Using the 
Taylor polynomial function of the first order, we have for the third 
approximation  {  (  )} = 	  { (  )} − (1/2  )   (  ), where  (  ) <  <  , or  (  ) >  >   . This implies that approximation c) will be more accurate 
in case variables    achieve higher values and/or have a small variance. 
 

 
 

Figure 1- function ℎ( ) =   ,   
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5    A CASE STUDY FROM THE CZECH REPUBLIC 
In 2009 a working process in the testing laboratory of a major Moravia-based 
ironmaker was scrutinized. The laboratory struggled to perform its tests of 
quality of the ironmaker’s products in the shortest time possible, which is a 
distinctive feature of testing laboratories in general. The reason is that the 
ironmaker, a part of which the laboratory is, funds its activities in part through 
bank credits just like any other bigger company. Thus, it has to pay off debts and 
interests, and so it tries to function as fast as possible so that the interests do not 
accumulate over time. The time factor also plays its role due to the fact that the 
ironmaker pays České dráhy railway company for expedition of iron products. 
Any delays on the rail track are therefore unwanted. The reality is that situations 
occur when the final product is more or less loaded up on train wagons, and the 
ironmaker awaits only the results of laboratory tests. In such cases, the laboratory 
is perceived as a hurdle by the ironmaker, although a necessary one. Therefore it 
was an imperative to solve the problem of process cycle time in the laboratory. 
The analysis of the problem focused on finding a suitable mathematical model 
which would express dependence of the working process cycle time of a 
problematic laboratory test on relevant factors. Conceivable factors were the 
number of technicians working in the laboratory and amount of work of different 
kind in the lab. However, since the number of technicians was constant during 
the time period of the analysis, it was not placed in the model as a variable, and 
so the factor influencing the process cycle time was the number of raw material 
samples the laboratory had to test. Specifically, there were two types of raw 
material samples that had the influence on the problematic test, so two 
independent variables occurred in the model. All the data required for finding the 
model were available as the laboratory recorded everything it did in its own 
computer system, including completed tests, results of the tests, names of 
technicians who carried out the tests, and the time it took them to perform the 
tests. The original data are shown in table 1. The data include working process 
cycle times for the problematic test (in hours), depending on the amount of raw 
material samples of two kinds   ,    that were used during the test. Different 
combinations of   ,    that ocurred in the test are recorded at the top of table 1. 
Table 2 contains sample characteristics obtained from table 1. These are: average 
process cycle times  ̅ of the problematic test, sample variances of these times   , 
coefficients of variation  / ̅, and a comparison of the values   ( ) and   ( ), 
which points to the extent of inaccuracy embedded in the approximation c). 
 

[0,1] [1,3] [2,4] [5,5] [13,3] [12,8] 
22,9681 67,0595 71,84 81,1366 164,951 139,581 
21,2965 50,5145 48,86 131,786 108,723 134,005 
13,9083 69,324 48,95 95,7887 113,281 156,931 
26,7113 80,4345 61,29 79,1434 151,387 186,156 
28,5072 58,7454 52,26 104,573 104,73 148,873 
26,4103 50,4678 51,92 72,6111 142,309 138,589 
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28,1765 59,906 57,02 86,2439 152,438 177,769 
27,5524 53,4843 54,5 80,9638 145,522 158,37 
32,9603 55,65 52,22 94,0361 104,289 159,901 
20,193 57,9979 47,57 67,6957 144,329 148,341 

30,3088 66,5641 40,19 82,4358 126,033 187,887 
22,2892 60,757 34,52 80,433 154,254 165,222 
36,7975 65,6812 69,09 82,4811 131,847 138,204 
27,4256 57,5055 52,34 76,0038 80,529 166,423 
32,5214 73,9333 62,08 92,8184 155,013 148,945 
22,4586 98,9978 41,33 67,2483 116,453 229,357 
19,0731 87,9221 43,18 63,9346 99,3141 146,857 
22,3774 66,2063 41,5 83,145 91,4711 230,198 
30,7776 49,6289 50,48 131,054 142,426 173,117 
33,5733 67,7669 46,56 80,7934 114,519 212,137 
25,4427 71,8023 - - 129,325 226,896 
30,4058 70,8647 - - 113,367 158,778 
23,0087 81,1306 - - - 118,447 

- 51,6516 - - - 123,431 
- 78,7595 - - - 161,073 
- - - - - 185,652 
- - - - - 202,319 

 
Table 1 - Lab test times for a given number of testing samples 

 
        ̅    				 / ̅   ( )   ( )	

0 1 26,31 29,43 0,21 3,248 3,233 
1 3 66,11 154,92 0,19 4,175 4,191 
2 4 51,39 90,28 0,18 3,923 3,894 
5 5 86,72 332,00 0,21 4,444 4,416 

13 3 126,66 548,94 0,18 4,824 4,799 
12 8 166,20 999,98 0,19 5,105 5,113 

 
Table 2 - Statistical characteristics calculated from the data in table 1 

 
Characteristics in table 2 suggest the coefficient of variation is rather stable 
across the groups of process cycle times, and it is close to 0,2. The last two 
columns of table 2 also imply that the inaccuracy of approximation c) is not 
significant. Therefore the equation (8) was used as a model describing 
dependence of working process cycle time of the problematic laboratory test on 
the amount of work the laboratory was burdened with. 
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Using the least squares method to estimate the parameters of model (8), the 
resulting regression model is  
 																																										  = exp(3,44 + 0,075  + 0,11  ).																															(9) 
 
Figure 2 compares empirical data from table 1 and theoretical values resulting 
from (9).  
 

 
       Figure 2-Model (9) 

 
We may improve the model a bit as it doesn’t fit well enough empirical values in 
the range of 20 to 45 and 109 to 134. If we use the polynomial function of the 
second order on the right-hand side of (8):  (  ) = exp	(  +      +      +        +       +       ), the least squares method gives a model 
 												  = exp(1,66 − 0,36  + 2  + 0,22    − 0,017   − 0,42   ).					(10)	
 
Figure 3 indicates that model (10) fits the data better than model (9). 
 

 
      Figure 3-Model (10) 

 
Model of the form (9) can be used, for instance, for the following purposes: 
 
To monitor work productivity as the model shows how long it should 
approximately take to test two kinds of raw material samples sized    and   . 
 
To establish how many workers are necessary so that all the samples were tested 
in time. This use of the model is valid in case one of the variables x  in the model 
represents the number of employees. 
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Since the model is exponential, we may assume that it is more convenient to 
process a greater number of batches containing a smaller number of raw material 
samples rather than the opposite. In the latter case, the time to process the 
samples increases disproportionately – by    (  ) if the number of samples of 
one kind    rises by a single unit (ceteris paribus), or by    (  ) if the number 
of samples of the second kind   	rises by one unit. 
 
To establish the amount of work the lab is able to accept if it is to handle the 
work by the time T at the latest. The requirement means that the acceptable raw 
material sample sizes   ,    must satisfy the inequality   exp(   +      +      ) ≤  . 

 
 
6    CONCLUSION 
The article dealt with a regression model that would describe dependence of 
working process cycle time on a group of relevant factors   , … ,   .  The 
analyzed working process was specific in that groups of cycle times 
corresponding to concrete levels of the factors   , … ,    had the same 
coefficients of variation. The Box-Cox transformation then implies that 
exponential model is a suitable regression model for such a situation. The reason 
behind it is the fact that taking a logarithm of measured times stabilizes their 
variance, and thus ensures that the least squares method gives estimates of the 
regression model with good statistical properties. Logarithm may also bring the 
probability distribution of times closer to normal distribution. The derived 
exponential model was applied to real-life data which showed that such a model 
is reasonable (the last two columns of table 2 and figure 3). 
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