FEATURES OF TEXTURE FORMATION IN POLYMORPHIC METALS BEING ELECTRODEPOSITED

Oleg B. Girin, Volodymyr I. Ovcharenko, Dmytro G. Korolyanchuk

Abstract


The aim of this work was further experimental verification of the existence of the phenomenon of electrochemical phase formation in metals and alloys via a supercooled liquid state stage. According to proposed idea the slowing down of the process of polymorphic transformation in a metal being electrodeposited should be accompanied by an intensive formation of the texture of the metastable modification and suppression of the texture development of the stable modification. The results of the texture analysis of electrodeposited cobalt as a model metal showed that under slowing down the polymorphic transformation process in a metal being electrodeposited, the texture formation is intensified in the metastable modification, but suppressed in the stable modification. The finding is another proof of the existence of the phenomenon of electrochemical phase formation in metals and alloys through a supercooled liquid state stage.


Keywords


electrochemical phase formation; electrodeposited cobalt; polymorphic transformation; texture

Full Text:

PDF

References


O. B. Girin: Phenomenon of Precipitation of Metal Being Electrodeposited, Occurring via Formation of an Undercooled Liquid Metal Phase and its Subsequent Solidification. Part 1. Experimental Detection and Theoretical Grounding. In: Materials Development and Processing, edited by J.V. Wood, L. Schultz, D.M. Herlach, WILEY-VCH Verlag Gmbh, Weinheim, Vol. 8, 2000, p. 183-188, http://dx.doi.org/10.1002/3527607277.ch30

O. B. Girin: Phenomenon of Precipitation of Metal Being Electrodeposited, Occurring via Formation of an Undercooled Liquid Metal Phase and its Subsequent Solidification. Part 2. Experimental Verification. In: Materials Development and Processing, edited by J.V. Wood, L. Schultz, D.M. Herlach, WILEY-VCH Verlag Gmbh, Weinheim, Vol. 8, 2000, p. 189-194, http://dx.doi.org/10.1002/3527607277.ch31

O. B. Girin: Journal of Chemical Technology and Metallurgy, Vol. 54, 2019, No. 2, p. 391-396

O. B. Girin: Surface Engineering and Applied Electrochemistry, Vol. 53, 2017, No. 2, p. 137-143, http://dx.doi.org/10.3103/S1068375517020041

O. B. Girin: Surface Engineering and Applied Electrochemistry, Vol. 53, 2017, No. 3, p. 233-239, http://dx.doi.org/10.3103/S1068375517030048

O. B. Girin: Surface Engineering and Applied Electrochemistry, Vol. 53, 2017, No. 4, p. 339-344, http://dx.doi.org/10.3103/S1068375517040056

A. Milchev: Electrocrystallization. Fundamentals of nucleation and growth, Springer US, New York, 2002, http://dx.doi.org/10.1007/b113784

M. Paunovic M., M. Schlesinger: Fundamentals of electrochemical deposition, second ed., WILEY-INTERSCIENCE, Hoboken, 2006, http://dx.doi.org/10.1002/aic.11636

E. B. Budevski, G. T. Staikov, W. J. Lorenz: Electrochemical phase formation and growth: an introduction to the initial stages of metal deposition, WILEY-VCH, Weinheim, 2008, http://dx.doi.org/10.1002/9783527614936

W. Plieth: Electrochemistry for materials science, Elsevier B. V., Amsterdam, 2008, http://dx.doi.org/10.1016/B978-0-444-52792-9.X5001-5

Yu. D. Gamburg, G. Zangari: Theory and practice of metal electrodeposition, Springer Science, New York, 2011, http://dx.doi.org/10.1007/978-1-4419-9669-5

A. Milchev: ChemTexts, Vol. 2, 2016, No. 4, p. 1-9, http://dx.doi.org/10.1007/s40828-015-0021-1

G. Staikov: Nanoscale, Vol. 8, 2016, No. 29, p. 13880-13892, http://dx.doi.org/10.1039/C6NR01547F

T. Mehmood et al.: International Journal of Electrochemical Science, Vol. 12, 2017, p. 1203-1215, http://dx.doi.org/10.20964/2017.02.45

S. R. Brankovic: Electrochemical Society Interface, Vol. 27, 2018, No. 2, p. 57–63, http://dx.doi.org/10.1149/2.F05182if

D. A. Porter, K. E. Easterling, M. Y. Sherif: Phase transformations in metals and alloys, third ed., CRC Press, Boca Raton, 2009, http://dx.doi.org/10.1201/9781439883570

M. J. Q. Hernandez, J. A. Pero-Sanz, L. F. Verdeja: Solidification and solid-state transformations of metals and alloys, first ed., Elsevier B. V., Amsterdam, 2017

L. Mentar et al.: Transactions of the IMF, Vol. 89, 2011, No. 3, p. 143-150, http://dx.doi.org/10.1179/174591911X13013911711888

S. Armyanov: Electrochimica Acta, Vol. 45, 2000, No. 20, p. 3323-3335, http://dx.doi.org/10.1016/S0013-4686(00)00408-4

A. Vicenzo, P. L. Cavallotti: Electrochimica Acta, Vol. 49, 2004, No. 24, p. 4079-4089, http://dx.doi.org/10.1016/j.electacta.2004.04.001




DOI: http://dx.doi.org/10.12776/ams.v25i4.1357

Refbacks

  • There are currently no refbacks.


SJR 2014: 0.502 - Q2 Metals and Alloys, 39./125.

SJR 2013: 0.309 - Q2 Metals and Alloys, 59./121.       

SJR 2012: 0.325 - Q2 Metals and Alloys, 33./90. (A)

SJR 2011: 0.363 - Q2 Metals and Alloys, 29./90. (A)

SJR 2010: 0.151 - Q3 Metals and Alloys, 68./90. (B)

SJR 2009: 0 - Q4 Metals and Alloys, 89./90. (C - according to the Slovak Journal Quality Criteria)

Indexed in: SCOPUS, Web of Science Core Collection, CROSSREF, GOOGLE SCHOLAR,CAMBRIDGE SCIENTIFIC ABSTRACTS, Committee on Publication Ethics (COPE)

IČO 00 397 610

EV 5174/15

p-ISSN 1335-1532, e-ISSN 1338-1156