KINETIC ANALYSIS OF SECONDARY PRECIPITATION IN A HP40-Nb ALLOY

Matías Humberto Sosa Lissarrague, Alfredo Juan, César Lanz, Bruno La Rocca, Alberto Picasso

Abstract


The HP40-Nb heat resistant alloy (35Ni-25Cr-Nb) was analysed by means of optical microscopy after aging treatments at 1073 and 1173 K for different times, in order to apply the classic Johnson – Mehl - Avrami – Kolmogorov kinetic model (JMAK), and thus calculate the activation energy of secondary M23C6 precipitation, which occurs during thermal aging. The relevance of this theoretical analysis is to infer the mechanism that controls the nucleation and growth of M23C6 secondary carbides, since the amount and morphology of these phase influences the mechanical properties as well as the corrosion resistance in service. After performing the kinetic analysis using the JMAK model, the activation energy was found to be 208 kJ/mol, which would indicate that the secondary precipitation in this alloy is controlled by the Cr-diffusion phenomenon along the austenitic matrix.


Keywords


JMAK model; HP40-Nb; activation energy; M23C6 secondary carbide precipitation

Full Text:

PDF

References


A. Picasso, C. Lanz, M. Sosa Lissarrague, A. Garófoli: Journal of Minerals and Materials Characterization and Engineering, Vol. 4, 2016, p. 48-61, https://doi.org/10.4236/jmmce.2016.41006

R. Song, S. Wu: Engineering Failure Analysis, Vol. 88, 2018, p. 63-72, https://doi.org/10.1016/j.engfailanal.2018.01.002

I. Sustaita Torres et al.: Materials Chemistry and Physics, Vol. 133, 2012, p. 1018-1023, https://doi.org/10.1016/j.matchemphys.2012.02.010

A. Reihani, R. Derakhshandeh Haghighi: Engineering Failure Analysis, Vol. 52, 2015, p. 97-108, https://doi.org/10.1016/j.engfailanal.2015.03.005

K. Buchaman, M. Kral, C. Bishop: Metallurgical and Materials Transactions A, Vol. 45, 2014, p. 3373–3385, https://doi.org/10.1007/s11661-014-2285-2

M. Attarian, A. Karimi Taheri: Materials Science & Engineering A, Vol. 659, 2016, p. 104-118, https://doi.org/10.1016/j.msea.2016.02.046

MR. Andrade, C. Bolfarini, LAM. Ferreira, CD. Souza Filho, LHC. Bonazzi: Materials Science & Engineering A, Vol. 636, 2015, p. 48-52, https://doi.org/10.1016/j.msea.2015.03.085

CJ. Liu, Y. Chen: Materials and Design, Vol. 32, 2011, p. 2507-2512, https://doi.org/10.1016/j.matdes.2010.08.031

MH. Sosa Lissarrague, S. Limandri, F. Prado, AC. Picasso: Metallography, Microstructure, and Analysis, Vol. 7, 2018, No. 3, p. 356-362, https://doi.org/10.1007/s13632-018-0448-z

MH. Sosa Lissarrague, A. Sepúlveda Buitrago, A. Picasso: Acta Metallurgica Slovaca, Vol. 25, 2019, No. 3, p. 180-185, https://doi.org/10.12776/ams.v25i3.1312

J. Guo, T. Cao, C. Cheng, X. Meng, J. Zhao: Microscopy and Microanalysis, Vol. 24, 2018, p. 478-487, https://doi.org/10.1017/S1431927618015180

AR. Andrade et al.: Materials Science & Engineering A, Vol. 628, 2015, p. 176-180, https://doi.org/10.1016/j.msea.2015.01.049

F. Tancret, J. Laigo, J. Furtado: Materials Science and Technology, Vol. 35, 2019, No. 3, p. 1924-1931, https://doi.org/10.1080/02670836.2019.1648371

IA. Sustaita Torres, S. Haro Rodriguez, R. Colás: High Temperature Materials Proceedia, Vol. 37, 2018, No. 2, p.133-139, https://doi.org/10.1515/htmp-2016-0112

R. Ortega Reyes, S. Haro Rodriguez, IA. Sustaita Torres, FA. Pérez González, R. Colás: Ingenierías, Vol. 22, 2019, No. 82, p. 22-32

G. Lothongkum, S. Ratanamahasakul, P. Wangyao: Acta Metallurgica Slovaca, Vol. 11, 2005, No. 1, p. 54-61

A. Baltušnikas, I. Lukošiūtė, V. Makarevičius, R. Kriūkienė, A. Grybėnas: Journal of Materials Engineering and Performance, Vol. 25, 2016, No. 5, p. 1945-1951, https://doi.org/10.1007/s11665-016-2002-y

R. Badji et al.: Materials Chemistry and Physics, Vol. 148, 2014, p. 664-672, https://doi.org/10.1016/j.matchemphys.2014.08.032

MJ. Starink: Journal of Materials Science, Vol. 36, 2001, No. 18, p. 4433-4441, https://doi.org/10.1023/A:1017974517877

F. Liu, F. Sommer, C. Bos, EJ. Mittemeijer: International Materials Reviews, Vol. 52, 2007, No. 4, p. 193–212, https://doi.org/10.1179/174328007X160308

J. Xu, F. Liu, S. Song, K. Zhang: Journal of non-Crystalline solids, Vol. 356, 2010, p. 1236-1245, https://doi.org/10.1016/j.jnoncrysol.2010.04.034

ATW. Kempen, F. Sommer, EJ. Mittemeijer: Journal of Materials Science, Vol. 37, 2002, No. 7, p. 1321-1332, https://doi.org/10.1023/A:1014556109351

W. Smith, J. Hashemi: Fundamentos de la ciencia e ingeniería de materiales, fifth ed., Mc-Graw Hill, Mexico, 2014




DOI: http://dx.doi.org/10.12776/ams.v25i4.1361

Refbacks

  • There are currently no refbacks.


SJR 2014: 0.502 - Q2 Metals and Alloys, 39./125.

SJR 2013: 0.309 - Q2 Metals and Alloys, 59./121.       

SJR 2012: 0.325 - Q2 Metals and Alloys, 33./90. (A)

SJR 2011: 0.363 - Q2 Metals and Alloys, 29./90. (A)

SJR 2010: 0.151 - Q3 Metals and Alloys, 68./90. (B)

SJR 2009: 0 - Q4 Metals and Alloys, 89./90. (C - according to the Slovak Journal Quality Criteria)

Indexed in: SCOPUS, Web of Science Core Collection, CROSSREF, GOOGLE SCHOLAR,CAMBRIDGE SCIENTIFIC ABSTRACTS, Committee on Publication Ethics (COPE)

IČO 00 397 610

EV 5174/15

p-ISSN 1335-1532, e-ISSN 1338-1156