Babak Ghorbanian, Seyed Mohammad Mousavi Khoie, Mahmood Rasouli


One of the most important methods of hardening steel tools is nitriding. During this process, nitrogen diffuses into the sample surface at high temperature and reacts with the elements existing in the sample and creates hard nitrides. Another way to create hard nitrides is the simultaneous hard diffusion of two nitride-causing elements. During the plasma electrolytic saturation process, one nitride –causing element, together with nitrogen, diffuses into the surface of the sample and forms a hard nitride coating on the surface of the component. In this process, a voltage is applied between a cathode (sample with smaller surface) and an anode (sample with larger surface); the plasma is formed on the surface of the cathode which then let the given elements diffuse into the surface of the base metal. In the present study, nitrogen and vanadium have diffused into the surface of the sample, 1.2436 tool steel, and vanadium nitride has been formed. The best combination of electrolyte solution is 4g Ferro vanadium, 50±1 ml nitric acid and sodium hydroxide. The results is indicating that the formed coating layer thickness is about 2-3.5 µm. As the conductivity increases, the condition for diffusion is provided; however, with over increasing the temperature, diffusion decreases. The coating formation has observed in 7-10±0.5 A current.


wear; Vanadium nitride; Steel 1.2436; Plasma electrolytic saturation

Full Text:



H. Tavakoli, S. M. Mousavi Khoie, S. P. H. Marashi, S. A. Hosseini Mogadam: Journal of Alloys and Compounds, Vol. 583, 2014, p. 382–389, doi:10.1016/j.jallcom.2013.08.068

A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. J. Dowey: Plasma electrolytic in engineering, Surf. Coat. Technol, Vol. 122, 1999, p. 73–93, doi:10.1016/S0257-8972(99)00441-7

P. C. Rath, L. Besra, B. P. Singh, S. Bhattacharjee: Ceramics International, Vol. 38, 2012, p. 3209–3216, doi:10.1016/j.ceramint.2011.12.026

D. J. Blackwood, K. H. W. Seah: Materials Science and Engineering C, Vol. 29, 2009, p. 1233–1238, doi:10.1016/j.msec.2008.10.015

W. Simka, M. Kaczmarek, A. Baron-Wieche´c, G. Nawrat, J. Marciniak, J. Zak: Electrochimical Acta, Vol. 55, 2010, p. 2437–2441, doi:10.1016/j.electacta.2009.11.097

C.S. Lin, M.T. Chen, J.H. Liu: Journal of Biomedical Materials Research Part A, Vol. 85A, 2008, p. 378-387, doi: 10.1002/jbm.a.31510

H.J. Song, S.H. Park, S.H. Jeong, Y.J. Park: Journal of Materials Processing Technology, Vol. 209, 2009, p. 864–870, doi:10.1016/j.jmatprotec.2008.02.055

M. Long, H.J. Rack, Titanium alloys in total joint replacement a materials science perspective, Biomaterials, Vol. 19 , 1998, p. 1621–1639, doi:10.1016/S0142-9612(97)00146-4

A. Krz˛akała, et al.: Electrochimica Acta, Vol. 104, 2013, p. 425–438, doi:10.1016/j.electacta.2012.12.081

M. Geetha, A. K. Singh, R. Asokamani, A.K. Gogia: Progress in Materials Science, Vol. 54, 2009, p. 397–425, doi:10.1016/j.pmatsci.2008.06.004

M.F. López, A. Gutiérrez, J.A. Jiménez: Electro chimica Acta, Vol. 47, 2002, p. 1359–1364, doi:10.1016/S0013-4686(01)00860-X

S. Nag, R. Banerjee, H.L. Fraser: Materials Science and Engineering C, Vol. 25, 2005, p. 357–362, doi:10.1016/j.msec.2004.12.013

W. Simka, M. Sowa, R.P. Socha, A. Maciej, J. Michalska: Electrochimica Acta, Vol. 104, 2013, p. 518–525, doi:10.1016/j.electacta.2012.10.130

W. Simka, R.P. Socha, G. Dercz, J. Michalska, A. Maciej, A. Krz˛akała: Applied Surface Science, Vol. 279, 2013, p. 317–323, doi:10.1016/j.apsusc.2013.04.091

Y.L. Zhou, M. Niinomi, T. Akahori: Materials Science and Engineering A, Vol. 371, 2004, p. 283–290, doi:10.1016/j.msea.2003.12.011

Y. Tsutsumi, M. Niinomi, M. Nakai, H. Tsutsumi, H. Doi, N. Nomura, T. Hanawa: Applied Surface Science, Vol. 262, 2012, p 34–38, doi:10.1016/j.apsusc.2012.01.024

Y.L. Zhou, M. Niinomi, T. Akahori, H. Fukui, H. Toda: Materials Science and Engineering A, Vol. 398, 2005, p. 28–36, doi:10.1016/j.msea.2005.03.032

B. Ghorbanian, and S.M.M Khoie: Acta Metallurgica Slovaca, Vol. 22, 2016, No. 2, p. 111-119, doi: 10.12776/ams.v22i2.659



  • There are currently no refbacks.

SJR 2014: 0.502 - Q2 Metals and Alloys, 39./125.

SJR 2013: 0.309 - Q2 Metals and Alloys, 59./121.       

SJR 2012: 0.325 - Q2 Metals and Alloys, 33./90. (A)

SJR 2011: 0.363 - Q2 Metals and Alloys, 29./90. (A)

SJR 2010: 0.151 - Q3 Metals and Alloys, 68./90. (B)

SJR 2009: 0 - Q4 Metals and Alloys, 89./90. (C - according to the Slovak Journal Quality Criteria)

Indexed in: SCOPUS, Web of Science Core Collection, CROSSREF, GOOGLE SCHOLAR,CAMBRIDGE SCIENTIFIC ABSTRACTS, Committee on Publication Ethics (COPE)

IČO 00 397 610

EV 5174/15

p-ISSN 1335-1532, e-ISSN 1338-1156