Piyada Suwanpinij, Hans Henning Dickert, Prasonk Sricharoenchai


Aiming to the process optimisation while reducing or avoiding experimental work, the work has been carried out by a physically-based thermokinetic model proven by synchrotron X-ray absorption spectroscopy. The mole fraction and size distribution of different precipitate species as well as the consumption of the dissolved elements are of the main interest. The model considers the involved parameters in the hot rolling process, i.e., austenite grain size, disloca-tion density as a function of deformation, and thermal history during the process. One main advantage is that it needs no adjustable fitting values. Both grain boundary and dislocation are nucleation sites. The diffuse interface effect on the interfacial energy as well as a volumetric misfit of AlN at dislocations is also taken into account. The latter is because of its significant difference in the lattice parameter from the matrix. The X-Ray absorption spectroscopy (XAS) taken advantage from the synchrotron technology has been employed for the quantification of the precipitation of vanadium as well as its fraction in the solid solution. The application of XAS is highlighted as it is superior to other conventional method and illuminates relatively large volume. With very good agreement, V(C,N) precipitates significantly due to high dislocation and is not overridden by the competing AlN. Slow cooling rate facilitates its precipitation significantly. These findings are crucial for the calculation of precipitation hardening, which must be evaluated with other strengthening mechanisms from the microstructure such as grain size, hard phase to discuss about the resulting mechanical properties.


precipitation simulation; high strength low alloyed steel; hot rolling; vanadium; X-ray absorption spectroscopy

Full Text:



R. H. J. Hannink, A. J. Hill: Nanostructure Control of Materials, 1st ed., Woodhead Publishing, Cambridge, 2006, p. 231

J. Lu, O. Omotoso, J. B. Wiskel, D. G. Ivey, H. Henein: Metallurgical and Materials Transactions A, Vol. 43, 2012, No.9, pp. 3043-3061, doi: 10.1007/s11661-012-1135-3

N. Kamikawa et al.: Acta Materialia, Vol. 83, 2015, No.1, p. 383-396, doi: 10.1016/j.actamat.2014.10.010

P. A. Manohar, M. Ferry, T. Chandra: ISIJ International, Vol. 38, 1998, No.9, p. 913-924, doi: 10.2355/isijinternational.38.913

G. Stechauner and E. Kozeschnik: Acta Materialia, Vol. 100, 2015, p. 135-146, doi: 10.1016/j.actamat.2015.08.042

M. Lückl, S. Zamberger and E. Kozeschnik: Steel Research International, Vol. 87, 2016, No. 3, p. 271-275, doi: 10.1002/srin.201500041

S. Zamberger, T. Wojcik, J. Klarner, G. Klösch, H. Schifferl, E. Kozeschnik: Steel Research International, Vol. 84, 2013, No.1, pp. 20-30. doi: 10.1002/srin.201200047

P. Lang, M. Rath, E. Kozeschnik, P.E.J. Rivera-Diaz-del-Castillo: Scripta Materialia, Vol.101, 2015, pp. 60-63, doi: 10.1016/j.scriptamat.2015.01.019

P. Lang, T. Wojcik, E. Povoden-Karadeniz, A. Falahati, E. Kozeschnik: Journal of Alloys and Compounds, Vol. 609, 2014, pp.129-136, doi: 10.1016/j.jallcom.2014.04.119

S. Zamberger, M. Pudar, K. Spiradek-Hahn, M. Reischl, E. Kozeschnik: International Journal of Materials Research, Vol.103, 2012, No. 6, pp. 680-687, doi: 10.3139/146.110688

A. Timoshenkov, P. Warczok, M. Albu, J. Klarner, E. Kozeschnik, R. Bureau, C. Sommitsch: Computational Materials Science, Vol. 94, 2014, p. 85-94, doi: 10.1016/j.commatsci.2014.02.017

Q. Du, K. Tang, C.D. Marioara, S.J. Andersen, B. Holmedal, R. Holmestad: Acta Materialia, Vol. 122, 2017, p. 178-186, doi: 10.1016/j.actamat.2016.09.052

M. Nöhrer, W. Mayer, S. Primig, S. Zamberger, E. Kozeschnik, H. Leitner: Metallurgical and Materials Transactions A, Vol. 45, 2014, No. 10, p. 4210-4219, doi: 10.1007/s11661-014-2373-3

M. Nöhrer, W. Mayer, S., Zamberger, E., Kozeschnik, H Leitner: Steel Research International, Vol.85, 2014, No.4, p. 679-688, doi: 10.1002/srin.201300185

P. Suwanpinij, H.H. Dickert, N. Thammajak , P. Srichareonchai: Materials Testing, Vol. 58, 2016, No.1, p. 5-11, doi: 10.3139/120.110802

K.C. Russell: Advances in Colloid and Interface Science, Vol. 13, 1980, No. 3, p. 205-318, doi: 10.1016/0001-8686(80)80003-0

K.G.F. Janssens, D. Raabe, E. Kozeschnik, M.A. Miodownik, B. Nestler: Computational Materials Engineering - An Introduction to Microstructure Evolution, 1st ed., Elsevier, Oxford, 2007

E. Kozeschnik, J. Svoboda, F.D. Fischer: CALPHAD, Vol. 28, 2004, No. 4, p. 379-382, doi: 10.1016/j.calphad.2004.11.003

E. Kozeschnik, J. Svoboda, F. D. Fischer: On the choice of chemical composition in multi-component nucleation, Int. Conference Solid-Solid Phase Transformations in Inorganic Materials, Phoenix, Arizona, J. M. Howe, D. E. Laughlin, J. K. Lee, U. Dahmen, W. A. Soffa, 2005, p. 301-310.

B. Sonderegger, E. Kozeschnik: Metallurgical and Materials Transactions A, Vol. 40, 2009, No.3, pp. 499-510, doi: 10.1007/s11661-008-9752-6

Thermodynamic Database ‘mc fe.tdb’, version 0.014

J. Svoboda, F.D. Fischer, P. Fratzl, E. Kozeschnik: Materials Science and Engineering: A, Vol. 385, 2004, No.1, p.166-174, doi: 10.1016/j.msea.2004.06.018

R. Kampmann, R. Wagner: Decomposition of Alloys: the Early Stages, 2nd Acta-Scripta Metallurgica Conference, Sonnenberg, Germany, Pergamon, 1983, p. 91-103, doi:10.1016/B978-0-08-031651-2.50018-5

U.F. Kocks: ASME Journal of Engineering Materials and Technology, Vol. 98, 1976, No.1, p.76 -85, doi: 10.1115/1.3443340

Y. Bergström: Review on Powder Metallurgy Physical Ceramic, Vol. 2, 1983, No. 2, p. 79-265.

L. E. Lindgren, K. Domkin, S. Hansson: Mechanics of Materials, Vol. 40, 2008, No. 11, p. 907-919, doi: 10.1016/j.mechmat.2008.05.005

Diffusion Database 'mc fe.ddb', version 1.03

Warczok P., Evaluation of Interfacial Engergies, Technical Paper on MatCalc, 2014.

J. E. Penner-Hahn: X-ray absorption spectroscopy, Comprehensive Coordination Chemistry II, J.A. McCleverty, T.J. Meyer, Pergamon, Oxford, 2003, p. 159-186

JJ. Rehr, R.C. Albers: Reviews of Modern Physics, Vol. 72, 2000, No. 3, p.621-654, doi: 10.1103/RevModPhys.72.621

W. Klysubun, P. Sombunchoo, W. Deenan, C. Kongmark: Journal of Synchrotron Radiation, Vol. 19, 2012, No. 6, p. 930-936, doi: 10.1107/S0909049512040381

M. Nagoshi, T. Aoyama, Y. Tanaka, T. Ishida, S. Kinoshiro ,K. Kobayashi: ISIJ International, Vol. 53, 2013, No. 12, p. 2197-2200, doi: 10.2355/isijinternational.53.2197

R. Radis, E. Kozeschnik: Steel Research International, Vol. 81, 2010, No. 8, p. 681-685, doi: 10.1002/srin.201000037

R. Lagneborg, T. Siwecki, S. Zajac: Scandinavian Journal of Metallurgy, Vol. 28, 1999, No. 5, p.186-241.

T.N. Baker: Materials Science and Technology, Vol. 25, 2009, No. 9, p. 1083-1107, doi: 10.1179/174328409X453253

T. Gladman: The Physical Metallurgy of Microalloyed Steels, 1st Ed., IOM, London,1997, p. 102.



  • There are currently no refbacks.

SJR 2014: 0.502 - Q2 Metals and Alloys, 39./125.

SJR 2013: 0.309 - Q2 Metals and Alloys, 59./121.       

SJR 2012: 0.325 - Q2 Metals and Alloys, 33./90. (A)

SJR 2011: 0.363 - Q2 Metals and Alloys, 29./90. (A)

SJR 2010: 0.151 - Q3 Metals and Alloys, 68./90. (B)

SJR 2009: 0 - Q4 Metals and Alloys, 89./90. (C - according to the Slovak Journal Quality Criteria)

Indexed in: SCOPUS, Web of Science Core Collection, CROSSREF, GOOGLE SCHOLAR,CAMBRIDGE SCIENTIFIC ABSTRACTS, Committee on Publication Ethics (COPE)

IČO 00 397 610

EV 5174/15

p-ISSN 1335-1532, e-ISSN 1338-1156