Causes of Non-normality of Monitored Quality Characteristics in Process Capability Analysis

Monika Sekaninová (1)
(1) VŠB - Technical University of Ostrava, Czechia

Abstract

Purpose: In process capability analysis, violation of the normality assumption is considered a non-standard situation. This paper defines and categorises causes of non-normality in manufacturing processes, which are essential for quality planning, control, and selecting appropriate analytical procedures. Based on a literature review and systematic investigation, four main categories have been identified. Each category is analysed in detail with practical implications for capability analysis. The paper provides a comprehensive framework for identifying non-normality causes and guiding further analysis steps.


Methodology/Approach: Systematic literature review and expert synthesis of causes, supported by practical examples and categorisation into four key areas


Findings: four categories of non-normality causes identified; each requires a specific analytical approach before capability analysis can proceed


Research Limitation/Implication: Focuses on categorisation; future work should develop automated detection methods and validate solutions across diverse industries


Originality/Value of paper: Provides the first comprehensive framework for identifying non-normality causes in manufacturing, bridging theory and industrial practice

Full text article

Generated from XML file

References

Ag-Yi, D.; Aidoo, E. N. 2022. A comparison of normality tests towards convoluted probability distributions. Online. Research in Mathematics. Roč. 9, č. 1. Available from: https://doi.org/10.1080/27684830.2022.2098568. [cit. 2025-03-31].

AIAG, 2005. Statistical Process Control (SPC). 2nd ed. AIAG. ISBN 1605341088.

Alevizakos, V.; Koukouvinos, Ch. 2020. Evaluation of process capability in gamma regression profiles. Online. Communications in Statistics - Simulation and Computation. Roč. 51, č. 9, s. 5174-5189. Available from: https://doi.org/10.1080/03610918.2020.1758941. [cit. 2023-10-10].

Alevizakos, V.; Koukouvinos, Ch.; Castagliola, P. 2018. Process capability index for Poisson regression profile based on the Spmk index. Online. Quality Engineering. Roč. 31, č. 3, s. 430-438. Available from: https://doi.org/10.1080/08982112.2018.1523426. [cit. 2023-10-10].

Alexopoulos, C.; Brimeers, J.; Bergs, T. 2023. Model for tool wear prediction in face hobbing plunging of bevel gears. Online. Wear. S. 524-525. Available from: https://doi.org/https://doi.org/10.1016/j.wear.2023.204787. [cit. 2025-08-07].

Arellano-Valle, R.; Azzalini, A.; Ferreira, C.; Santoro, K. 2020. A two-piece normal measurement error model. Online. Computational Statistics & Data Analysis. Roč. 144, article 106863. Available from: https://doi.org/https://doi.org/10.1016/j.csda.2019.106863. [cit. 2025-07-28].

Avram, C.; Marusteri, M. 2022. Normality assessment, few paradigms and use cases. Online. Revista Romana de Medicina de Laborator. Roč. 30, č. 3, s. 251-260. Available from: https://doi.org/10.2478/rrlm-2022-0030. [cit. 2025-03-31].

Bae, I.; Ji, U. 2019. Outlier Detection and Smoothing Process for Water Level Data Measured by Ultrasonic Sensor in Stream Flows. Online. Water. Roč. 11, č. 5, s. 951. Available from: https://doi.org/https://doi.org/10.3390/W11050951. [cit. 2025-06-01].

Borucka, A.; Kozłowski, E.; Antosz, K.; Parczewski, R. 2023. A New Approach to Production Process Capability Assessment for Non-Normal Data. Online. Applied Sciences. Roč. 13, č. 11, s. 6721. Available from: https://doi.org/https://doi.org/10.3390/app13116721. [cit. 2025-08-19].

Cabral, C.; De Souza, N.; Leão, J. 2020. Bayesian measurement error models using finite mixtures of scale mixtures of skew-normal distributions. Online. Journal of Statistical Computation and Simulation. Roč. 92, s. 623-644. Available from: https://doi.org/https://doi.org/10.1080/00949655.2021.1969397. [cit. 2025-07-28].

Cavus, M.; Yaizici, B.; Sezer, A. 2023. Penalized power properties of the normality tests in the presence of outliers. Online. Communication in Statistics- Simulation and Computation. Roč. 52, č. 8, s. 3568-3580. Available from: https://doi.org/10.1080/03610918.2021.1938124. [cit. 2025-03-31].

CONSENSUS, 2025. Online. Consensus AI. AI nástroj pro rešerši vědeckých článků. Available from: https://consensus.app/. [cit. 2025-07-28].

Demir, S. 2022. Comparison of Normality Tests in Terms of Sample Sizes under Different Skewness and Kurtosis Coefficients. Online. International journal of assessment tools in education. Roč. 9, č. 2, s. 397-409. Available from: https://doi.org/10.21449/ijate.1101295. [cit. 2025-03-31].

Gai, X.; CHeng, Y.; Guan, R.; Jin, Y. a Lu, M. 2022. Tool wear state recognition based on WOA-SVM with statistical feature fusion of multi-signal singularity. Online. The International Journal of Advanced Manufacturing Technology. Roč. 123, s. 2209 - 2225. Available from: https://doi.org/https://doi.org/10.1007/s00170-022-10342-9. [cit. 2025-07-28].

Hao, L.; Bian, L.; Gebraeel, N.; Shi, J. 2017. Residual Life Prediction of Multistage Manufacturing Processes With Interaction Between Tool Wear and Product Quality Degradation. Online. IEEE Transactions on Automation Science and Engineering. Roč. 14, s. 1211-1224. Available from: https://doi.org/https://doi.org/10.1109/TASE.2015.2513208.

Herrera-Granados, G.; Misaka, T.; Herwan, J.; Komoto, H.; Furukawa, Y. 2024. An experimental study of multi-sensor tool wear monitoring and its application to predictive maintenance. Online. The International Journal of Advanced Manufacturing Technology. Roč. 133, s. 3415–3433. Available from: https://doi.org/https://doi.org/10.1007/s00170-024-13959-0. [cit. 2025-07-28].

Hosseinifard, S.; Abbasi, B. 2012. Process Capability Analysis in Non Normal Linear Regression Profiles. Online. Communications in Statistics - Simulation and Computation. Roč. 41, s. 1761 - 1784. Available from: https://doi.org/https://doi.org/10.1080/03610918.2011.611313. [cit. 2025-08-19].

Hosseinifard, S.; Abbasi, B.; Ahmad, S.; Abdollahian, M. 2009. A transformation technique to estimate the process capability index for non-normal processes. Online. The International Journal of Advanced Manufacturing Technology. Roč. 40, č. 5, s. 512-517. Available from: DOI: 10.1007/s00170-008-1376-x. [cit. 2023-10-10].

Huang, Z.; Shao, J.; Zhu, J.; Zhang, W. a Li, X. 2024. Tool wear condition monitoring across machining processes based on feature transfer by deep adversarial domain confusion network. Online. Journal of Intelligent Manufacturing. Roč. 35, s. 1079-1105. Available from: https://doi.org/https://doi.org/10.1007/s10845-023-02088-2. [cit. 2025-07-28].

Chen, C. 2018. The determination of product and process parameters under the non-normal distribution. Online. Journal of Information and Optimization Sciences. Roč. 40, s. 29-36. Available from: https://doi.org/https://doi.org/10.1080/02522667.2017.1406581. [cit. 2025-06-22].

Cheng, Y.; Gai, X.; Guan, R.; Jin, Y.; Lu, M. et al. 2023. Tool wear intelligent monitoring techniques in cutting: a review. Online. Journal of Mechanical Science and Technology. Roč. 37, s. 289-303. Available from: https://doi.org/https://doi.org/10.1007/s12206-022-1229-9. [cit. 2025-07-28].

CHou, C.; Chen, C. 2017. Optimum process mean, standard deviation and specification limits settings under the Burr distribution. Online. Engineering Computations. Roč. 34, s. 66-76. Available from: https://doi.org/https://doi.org/10.1108/EC-10-2015-0321. [cit. 2025-06-22].

ISO, 2017. ISO 22514-2, ISO 22514-2: Statistical methods in process management – Capability and performance. Part 2: Process capability and performance of time-dependent process models.

Jain, S.; Shukla, S. a Wadhvani, R. 2018. Dynamic selection of normalization techniques using data complexity measures. Online. Expert Systems with Applications. Roč. 106, s. 252-262. Available from: https://doi.org/https://doi.org/10.1016/j.eswa.2018.04.008. [cit. 2025-07-29].

Jäntschi, L. a Bolboacă, S. 2018. Computation of Probability Associated with Anderson–Darling Statistic. Online. Mathematics. Roč. 6, č. 88, s. 103-105. Available from: https://doi.org/https://doi.org/10.3390/MATH6060088. [cit. 2025-08-13].

Karakaya, K. 2024. A general novel process capability index for normal and non-normal measurements. Online. Ain Shams Engineering Journal. Roč. 15, č. 6. Available from: https://doi.org/https://doi.org/10.1016/j.asej.2024.102753. [cit. 2025-08-19].

Kitani, M.; Murakami, H. 2024. Modified two-sample Anderson-Darling test statistic. Online. Communications in Statistics - Theory and Methods. Roč. 54, s. 4575 - 4599. Available from: https://doi.org/https://doi.org/10.1080/03610926.2024.2425733. [cit. 2025-08-21].

Lavrač, S.; Turk, G. 2024. A Power Transformation for Non-Normal Processes Capability Estimation. Online. IEEE Access. Roč. 12, s. 93020-93032. Available from: https://doi.org/https://doi.org/10.1109/ACCESS.2024.3423488. [cit. 2025-08-19].

Lee, W.; Mendis, G.; Triebe, M.; Sutherland, J. 2019. Monitoring of a machining process using kernel principal component analysis and kernel density estimation. Online. Journal of Intelligent Manufacturing. Roč. 31, s. 1175 - 1189. Available from: https://doi.org/https://doi.org/10.1007/s10845-019-01504-w.

Leone, C.; D´Addona, D.; Teti, R. 2011. Tool wear modelling through regression analysis and intelligent methods for nickel base alloy machining. Online. Cirp Journal of Manufacturing Science and Technology. Roč. 4, č. 3, s. 327-331. Available from: https://doi.org/https://doi.org/10.1016/J.CIRPJ.2011.03.009. [cit. 2025-08-07].

Li, Z.; Liu, R. ; Wu, D. 2019. Data-driven smart manufacturing: Tool wear monitoring with audio signals and machine learning. Online. Journal of Manufacturing Processes. Roč. 48, s. 66-76. Available from: https://doi.org/https://doi.org/10.1016/j.jmapro.2019.10.020. [cit. 2025-07-28].

Liao, H.; Xiao, Y.; Wu, X.; Baušys, R. 2024. Z-DNMASort: A double normalization-based multiple aggregation sorting method with Z-numbers for multi-criterion sorting problems. Online. Information Sciences. Roč. 653, article 119782. Available from: https://doi.org/https://doi.org/10.1016/j.ins.2023.119782. [cit. 2025-07-29].

Mandić-Rajčević, S.; Colosio, C. 2019. Methods for the Identification of Outliers and Their Influence on Exposure Assessment in Agricultural Pesticide Applicators: A Proposed Approach and Validation Using Biological Monitoring. Online. Toxics. Roč. 7, č. 3, s. 37. Available from: https://doi.org/https://doi.org/10.3390/toxics7030037. [cit. 2025-06-01].

Munaro, R.; Attanasio, A.; Del Prete, A. 2023. Tool Wear Monitoring with Artificial Intelliegence Methods: A review. Online. Journal of Manufacturing and Materials Processing. Roč. 7, č. 4, s. 129. Available from: https://doi.org/https://doi.org/10.3390/jmmp7040129. [cit. 2025-08-07].

Nepraš, K.; Plura, J. 2015. Possibilities of data non-normality solving at process capability analysis in terms of part symmetry. In: Metal 2015: conference proceedings. Ostrava: Tanger, s. 2009-2014. ISBN 978-80-87294-62-8.

Nepraš, K.; Plura, J. 2016. Methodical Approaches to Process Capability Analysis in the Cases of Non-Normal Distribution of Monitored Quality Characteristic. In: Metal 2016: conference proceedings. Ostrava: Tanger, s. 1950-1955. ISBN 978-80-87294-67-3.

Peng, H.; Han, Q. 2024. Containing geometrical tolerances in concurrent optimal allocation of design and process tolerances. Online. The International Journal of Advanced Manufacturing Technology. Roč. 133, s. 1549–1562. Available from: https://doi.org/https://doi.org/10.1007/s00170-024-13860-w. [cit. 2025-07-28].

Rabatel, G.; Marini, F.; Walczak, B.; Roger, J. 2020. VSN: Variable sorting for normalization. Online. Journal of Chemometrics. Roč. 34, č. 2. Available from: https://doi.org/https://doi.org/10.1002/cem.3164. [cit. 2025-07-29].

Rao, G. S.; Albassam, M.; Aslam, M. 2019. Evaluation of Bootstrap Confidence Intervals Using a New Non-Normal Process Capability Index. Online. Symmetry. Roč. 11, č. 4, s. 484. Available from: https://doi.org/10.3390/sym11040484. [cit. 2023-10-10].

Razali, N.; Wah, Y. 2011. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Online. Journal of Statistical Modeling and Analytics. Roč. 2, č. 1, s. 21-33. Available from: https://www.researchgate.net/publication/267205556_Power_Comparisons_of_Shapiro-Wilk_Kolmogorov-Smirnov_Lilliefors_and_Anderson-Darling_Tests#fullTextFileContent. [cit. 2025-08-13].

Ropinski, T.; Ritschel, T.; Singh, G.; Van Onzenoodt, C. 2021. Blue Noise Plots. Online. Computer Graphics Forum. Roč. 40, č. 2, s. 425-433. Available from: https://doi.org/https://doi.org/10.1111/cgf.142644. [cit. 2025-06-18].

Senvar, O.; Sennaroglu, B. 2016. Comparing performances of clements, box-cox, Johnson methods with weibull distributions for assessing process capability. Online. Journal of Industrial Engineering and Management. Roč. 9, č. 3, s. 634-656. Available from: https://doi.org/http://dx.doi.org/10.3926/jiem.1703. [cit. 2023-10-10].

Spicker, D.; Wallace, M.; Yi, G. 2021. Nonparametric simulation extrapolation for measurement‐error models. Online. Canadian Journal of Statistics. Roč. 52, č. 2, s. 477-499. Available from: https://doi.org/https://doi.org/10.1002/cjs.11777. [cit. 2025-07-28].

Subramaniam, M.; Chandra Umakantham, O. 2025. Cluster Sort: A Novel Hybrid Approach to Efficient In-Place Sorting Using Data Clustering. Online. IEEE Access. Roč. 13, s. 74359-74374. Available from: https://doi.org/https://doi.org/10.1109/ACCESS.2025.3564380. [cit. 2025-07-29].

Taib, H.; Alani, B. 2021. Estimation of Non-Normal Process Capability Indices. Online. Al-Rafidain Journal of Computer Sciences and Mathematics. Roč. 15, č. 1, s. 35-56. Available from: https://doi.org/https://doi.org/10.33899/CSMJ.2021.168260. [cit. 2025-08-19].

Tang, L.; Than, S. 1999. Computing process capability indices for non‐normal data: a review and comparative study. Online. Quality and Reliability Engineering International. Roč. 15, s. 339-353. Available from: https://doi.org/https://doi.org/10.1002/(SICI)1099-1638(199909/10)15:5<339::AID-QRE259>3.0.CO;2-A. [cit. 2025-08-19].

Thavron, E.; Sudasna-Na-Ayudthhya, P. 2022. The Effects of Weibull Distribution on Supplier Comparison using Lower Process Capability Index: A Case Study. Online. Trends in Sciences. Roč. 19, č. 3, s. 2158. Available from: https://doi.org/10.48048/tis.2022.2158. [cit. 2023-10-10].

Velyka, O. T.; Liaskovska, S. E.; Smotr, O. O.; Boyko, M. V. 2021. Simulation modeling of technological process of manufacturing in FlexSim environment. Online. Scientific Bulletin of UNFU. Roč. 31, č. 2, s. 108-113. Available from: https://doi.org/https://doi.org/10.36930/40310218. [cit. 2025-07-29].

Wang, S.; Chiang, J.-Y.; Tsai, T.-R.; Qin, Y. 2021. Robust process capability indices and statistical inference based on model selection. Online. Computers & Industrial Engineering. Č. 156, s. 1-17. ISSN 0360-8352. Available from: https://doi.org/10.1016/j.cie.2021.107265. [cit. 2023-11-15].

Yan, B.; Zhu, L. a Dun, Y. 2021. Tool wear monitoring of TC4 titanium alloy milling process based on multi-channel signal and time-dependent properties by using deep learning. Online. Journal of Manufacturing Systems. Roč. 61, s. 495-508. Available from: https://doi.org/https://doi.org/10.1016/j.jmsy.2021.09.017. [cit. 2025-07-28].

Yang, Q.; Pattipati, K.; Awasthi, U.; Bollas, G. 2022. Hybrid data-driven and model-informed online tool wear detection in milling machines. Online. Journal of Manufacturing Systems. Roč. 63, s. 329-343. Available from: https://doi.org/https://doi.org/10.1016/j.jmsy.2022.04.001. [cit. 2025-07-28].

Yang, Y. ; Zhu, H. 2018b. A Study of Non-Normal Process Capability Analysis Based on Box-Cox Transformation. Online. 2018 3rd International Conference on Computational Intelligence and Applications (ICCIA). S. 240-243. Available from: https://doi.org/https://doi.org/10.1109/ICCIA.2018.00053. [cit. 2025-08-19].

Yang, Y.; Li, D.; Qi, Y. 2018. An Approach to Non-normal Process Capability Analysis Using Johnson Transformation. Online. 2018 IEEE 4th International Conference on Control Science and Systems Engineering (ICCSSE). S. 495-498. Available from: https://doi.org/https://doi.org/10.1109/CCSSE.2018.8724679. [cit. 2025-08-19].

Yang, Y.; Zhu, H. 2018a. A study of non-normal process capability analysis based on box-cox transformation. Online. In: Proceedings – 3rd Internationl Conference on Computational Intelligence and Applications. Qingdao: Naval Aviation University, s. 240-243. Available from: https://doi.org/10.1109/ICCIA.2018.00053. [cit. 2023-10-10].

Yi, X.; Song, Y.; Zhang, H.; Cui, H.; Lu, W. et al. 2025. A workflow to select local tolerance limits by combining statistical process control and error curve model. Online. Medial Physics. Roč. 52, č. 6, s. 4815 - 4827. Available from: https://doi.org/https://doi.org/10.1002/mp.17715. [cit. 2025-07-28].

Authors

Monika Sekaninová
monika.sekaninova@email.cz (Primary Contact)
Sekaninová, M. (2025). Causes of Non-normality of Monitored Quality Characteristics in Process Capability Analysis. Quality Innovation Prosperity, 29(3), 112–138. https://doi.org/10.12776/qip.v29i3.2266

Article Details

Similar Articles

<< < 14 15 16 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.

No Related Submission Found