The Impact of Artificial Intelligence on Quality and Sustainable Development: a Bibliometric Analysis
Abstract
Purpose: This bibliometric study aims to analyse the impact of artificial intelligence (AI) on quality and sustainable development.
Methodology/Approach: The research employed the InOrdinatio method, complemented by R Studio and the Bibliometrix package, to conduct a comprehensive review of scientific publications from 2000 to 2024.
Findings: The results reveal a significant annual growth rate of 25% in scientific production, accumulating 925 documents. AI has been widely applied to optimise organisational quality processes, particularly in manufacturing and technology sectors. Furthermore, AI has contributed to sustainable development by enhancing resource management and promoting sustainable practices. The study highlights strong international collaboration, with China, the United States, and India leading scientific output.
Research Limitation/Implication: Despite the increasing convergence of AI, quality, and sustainability, the study identifies gaps in research integration across underrepresented regions and a lack of focus on emerging areas.
Originality/Value of paper: This study provides a structured bibliometric analysis, shedding light on the evolving role of AI in enhancing quality management and fostering sustainability. The findings contribute to future research directions by identifying key trends, challenges, and opportunities for innovation.
Full text article
References
Al-Busaidi, K.A. and Al-Muharrami, S., 2021. ‘Beyond profitability: ICT investments and financial institutions performance measures in developing economies’, Journal of Enterprise Information Management, 34(3), pp. 900–921. https://doi.org/10.1108/JEIM-09-2019-0250.
Aldoseri, A., Al-Khalifa, K.N. and Hamouda, A.M., 2023. ‘Re-Thinking Data Strategy and Integration for Artificial Intelligence: Concepts, Opportunities, and Challenges’, Applied Sciences, 13(12), p. 7082. https://doi.org/10.3390/app13127082.
Alhajeri, R. and Alhashem, A., 2023. Using Artificial Intelligence to Combat Money Laundering. Intelligent Information Management 15(04), pp. 284–305. https://doi.org/10.4236/iim.2023.154014.
Amaya Pingo, P.M., Felix Poicon, E.C.L., Rojas Vargas, S. and Diaz Tito, L.P., 2020. Gestión de la calidad: Un estudio desde sus principios. Revista Venezolana de Gerencia 25(90), pp. 632–647. https://doi.org/10.37960/rvg.v25i90.32406.
CEPAL., 2016. Estudio económico de América Latina y el Caribe 2016 : La Agenda 2030 para el Desarrollo Sostenible y los desafíos del financiamiento para el desarrollo. Available at: https://repositorio.cepal.org/server/api/core/bitstreams/c1976e11-2ea7-4f9a-936f-f1d65a7061c7/content [Accessed: 28 May 2024].
Chowdhary, K.R., 2020. Natural Language Processing. In: Fundamentals of Artificial Intelligence. New Delhi: Springer India, pp. 603–649. https://doi.org/10.1007/978-81-322-3972-7_19.
Crosby, P., 1979. Quality is Free. McGraw-Hill ed.
Deming, W., 1982. Quality, Productivity, and Competitive Position. Massachusetts Institute of Technology, C. for A. E. S. ed.
Feigenbaum, A.V., 1991. Total quality control. 3rd ed., rev. New York: McGraw-Hill.
Groten, M. and Gallego-García, S., 2021. ‘A Systematic Improvement Model to Optimize Production Systems within Industry 4.0 Environments: A Simulation Case Study’, Applied Sciences, 11(23), p. 11112. https://doi.org/10.3390/app112311112.
Haenlein, M., Kaplan, A., Tan, C.-W. and Zhang, P., 2019. Artificial intelligence (AI) and management analytics. Journal of Management Analytics 6(4), pp. 341–343. https://doi.org/10.1080/23270012.2019.1699876.
Javaid, M., Haleem, A., Singh, R.P. y Suman, R., 2022. Artificial Intelligence Applications for Industry 4.0: A Literature-Based Study, Journal of Industrial Integration and Management, 07(01), pp. 83–111. https://doi.org/10.1142/S2424862221300040.
Liu, J., Mooney, H., Hull, V., Davis, S.J., Gaskell, J., Hertel, T., Lubchenco, J., Seto, K.C., Gleick, P., Kremen, C. y Li, S., 2015. ‘Systems integration for global sustainability’, Science, 347(6225). https://doi.org/10.1126/science.1258832.
Matyushok, V., Krasavina, V., Berezin, A. and García, J.S., 2021. The global economy in technological transformation conditions: A review of modern trends. Economic Research-Ekonomska Istraživanja 34(1), pp. 1471–1497. https://doi.org/10.1080/1331677X.2020.1844030.
Mhlanga, D., 2022. ‘Human-Centered Artificial Intelligence: The Superlative Approach to Achieve Sustainable Development Goals in the Fourth Industrial Revolution’, Sustainability, 14(13), p. 7804. Available at: https://doi.org/10.3390/su14137804.
Mikalef, P. and Krogstie, J., 2020. Examining the interplay between big data analytics and contextual factors in driving process innovation capabilities. European Journal of Information Systems 29(3), pp. 260–287. https://doi.org/10.1080/0960085X.2020.1740618.
Murdan, A.P. and Oree, V., 2024. The Role of the Internet of Things for a More Sustainable Future. In: Artificial Intelligence, Engineering Systems and Sustainable Development. Emerald Publishing Limited, pp. 157–168. https://doi.org/10.1108/978-1-83753-540-820241012.
Nguyen, D.-V., Zhang, Q., Chen, L. y Wang, Y., 2024. ‘Current developments in machine learning models with boosting algorithms for the prediction of water quality’, in Water Security: Big Data-Driven Risk Identification, Assessment and Control of Emerging Contaminants. Elsevier, pp. 575–591. Available at: https://doi.org/10.1016/B978-0-443-14170-6.00015-9.
Nguyen, M., Phan, A. and Matsui, Y., 2018. Contribution of Quality Management Practices to Sustainability Performance of Vietnamese Firms. Sustainability 10(2), p. 375. https://doi.org/10.3390/su10020375.
Pagani, R.N., Kovaleski, J.L. and Resende, L.M., 2015. Methodi Ordinatio: a proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication. Scientometrics 105(3), pp. 2109–2135. https://doi.org/10.1007/s11192-015-1744-x.
Ponce-Diaz, N., Martínez-Usarralde, M.J. and Beltrán-Lavador, J., 2024. Espejos de Sostenibilidad: Ideas-guía para desvelar creencias y actitudes hacia la sostenibilidad desde Modelo Transformacional de Responsabilidad Social Universitaria (RSU) de Alcaraz-Lamana y la Teoría de Acción Planificada de Ajzen. Revista de Estudios y Experiencias en Educación 23(52), pp. 267–284. https://doi.org/10.21703/rexe.v23i52.2052.
Popović, B.Z., 2019. Social oriented quality: from quality 4.0 towards quality 5.0. Proceedings on Engineering Sciences 1(2), pp. 397–400. https://doi.org/ 10.24874/PES01.02.037.
Qin, Y., Xu, Z., Wang, X. y Skare, M., 2024. ‘Artificial Intelligence and Economic Development: An Evolutionary Investigation and Systematic Review’, Journal of the Knowledge Economy, 15(1), pp. 1736–1770. Available at: https://doi.org/10.1007/s13132-023-01183-2.
Quintero-Quintero, W., Blanco-Ariza, A.B. and Garzón-Castrillón, M.A., 2021. Intellectual Capital: A Review and Bibliometric Analysis. Publications 9(4), p. 46. https://doi.org/10.3390/publications9040046.
Sachs, J.D., 2015. The Age of Sustainable Development. New York: Columbia University Press. https://doi.org/10.7312/sach17314.
Sami, J., Abdulrahman, L., Abdullah, R. y Sami, T.M.G., 2024. AI-powered sustainability management in enterprise systems based on cloud and web technology integrating IoT data for environmental impact reduction. Journal of Information Technology and Informatics (JITI). Available at: https://www.researchgate.net/publication/382306224.
Santos, S., Vilela, J., Carvalho, T., Rocha, T., Candido, T., Bezerra, V. and Silva, D., 2024. Artificial Intelligence in Sustainable Smart Cities: A Systematic Study on Applications, Benefits, Challenges, and Solutions. In: Proceedings of the 26th International Conference on Enterprise Information Systems. SCITEPRESS - Science and Technology Publications, pp. 644–655. https://doi.org/10.5220/0012617900003690.
Sharma, A. y Kulshrestha, P., 2024. 'An AI and IoT Based Smart Green Home Sustainability', en Smart Trends in Computing and Communications: Proceedings of SmartCom 2023. Lecture Notes in Networks and Systems, vol. 799. Springer, Singapur, pp. 59–70. https://doi.org/10.1007/978-981-97-1320-2_6.
Silva-Ordoñez, I., Jiménez-Silva, W., Santamaría-Freire, E. and Villalba-Miranda, R., 2019. Calidad en el servicio como herramienta de planificación en las empresas del sector terciario. Revista de Ciencias Sociales 25(1), pp. 83–95. https://doi.org/10.31876/rcs.v25i1.27338.
Verma, P., Dumka, A., Bhardwaj, A., Ashok, A., Kestwal, M.C. and Kumar, P., 2021. A Statistical Analysis of Impact of COVID19 on the Global Economy and Stock Index Returns. SN Computer Science 2(1), p. 27. https://doi.org/10.1007/s42979-020-00410-w.
Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S.D., Tegmark, M. y Fuso Nerini, F., 2020. ‘The role of artificial intelligence in achieving the Sustainable Development Goals’, Nature Communications. Nature Research. Available at: https://doi.org/10.1038/s41467-019-14108-y.
Wani, A.K., Rahayu, F., Ben Amor, I., Quadir, M., Murianingrum, M., Parnidi, P., Ayub, A., Supriyadi, S., Sakiroh, S., Saefudin, S., Kumar, A. y Latifah, E., 2024. Environmental resilience through artificial intelligence: innovations in monitoring and management. Environmental Science and Pollution Research 31(12), pp. 18379–18395. https://doi.org/10.1007/s11356-024-32404-z.
Yigitcanlar, T. and Cugurullo, F., 2020. The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart and Sustainable Cities. Sustainability 12(20), p. 8548. https://doi.org/10.3390/su12208548.
Ziesche, S., Agarwal, S. y Nagaraju, U., 2023. Role of artificial intelligence in advancing sustainable development goals in the agriculture sector. In, . Saxena, ed. The Ethics of Artificial Intelligence for the Sustainable Development Goals. Cham: Springer, pp.379–397. https://doi.org/10.1007/978-3-031-21147-8_21.
Authors
Copyright (c) 2025 Genny Navarro, José Bayona

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. This journal is licensed under a Creative Commons Attribution 4.0 License - http://creativecommons.org/licenses/by/4.0.
Authors who publish with the Quality Innovation Prosperity agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.